Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
35523600643171047201286312 ~2021
35524055971171048111942312 ~2021
35528967587971057935175912 ~2021
3553255377012771...94067914 2024
35532652363171065304726312 ~2021
3553269417472345...15530314 2024
3553513270813979...63307314 2024
35537496037171074992074312 ~2021
3553765707291023...36995315 2024
35538722521171077445042312 ~2021
3553966496892487...47823114 2024
35541582119971083164239912 ~2021
35544512275171089024550312 ~2021
35545639417171091278834312 ~2021
35547269972371094539944712 ~2021
35548931053171097862106312 ~2021
35553510038371107020076712 ~2021
35554220125171108440250312 ~2021
35554611077971109222155912 ~2021
35557682402371115364804712 ~2021
35558132348371116264696712 ~2021
35560430111971120860223912 ~2021
3556102985776543...93816914 2024
35562706352371125412704712 ~2021
35569695323971139390647912 ~2021
Exponent Prime Factor Dig. Year
35569857902371139715804712 ~2021
35572194631171144389262312 ~2021
35573275574371146551148712 ~2021
35577640457971155280915912 ~2021
3557818467111707...64212914 2024
3557876491693130...12687314 2024
35578895083171157790166312 ~2021
35580221882371160443764712 ~2021
3558356920312348...67404714 2024
35584395836371168791672712 ~2021
35595468224371190936448712 ~2021
35595903643171191807286312 ~2021
35598061445971196122891912 ~2021
35600010911971200021823912 ~2021
35600342852371200685704712 ~2021
35601432956371202865912712 ~2021
35601913628371203827256712 ~2021
35603672093971207344187912 ~2021
3560438660113133...20896914 2024
35604901021171209802042312 ~2021
3560673165476907...41011914 2024
35607957883171215915766312 ~2021
3561198950636623...48171914 2024
35613707636371227415272712 ~2021
3561715508591495...13607914 2024
Exponent Prime Factor Dig. Year
35617590133171235180266312 ~2021
3561841791372778...97268714 2024
35619641438371239282876712 ~2021
35623074335971246148671912 ~2021
3562596001211284...03632716 2024
35626902902371253805804712 ~2021
35627240705971254481411912 ~2021
35633406650371266813300712 ~2021
35634111308371268222616712 ~2021
35636521187971273042375912 ~2021
35638432957171276865914312 ~2021
35639345984371278691968712 ~2021
35646217633171292435266312 ~2021
35646818407171293636814312 ~2021
35651178734371302357468712 ~2021
3566847496572496...47599114 2024
35677608614371355217228712 ~2021
35681256437971362512875912 ~2021
35682622706371365245412712 ~2021
35682903392371365806784712 ~2021
35685923600371371847200712 ~2021
35691656951971383313903912 ~2021
35692994261971385988523912 ~2021
35696274499171392548998312 ~2021
35697555305971395110611912 ~2021
Exponent Prime Factor Dig. Year
35702300525971404601051912 ~2021
35706658331971413316663912 ~2021
35710197308371420394616712 ~2021
35714109109171428218218312 ~2021
35716833104371433666208712 ~2021
35717643848371435287696712 ~2021
35719142090371438284180712 ~2021
35719333081171438666162312 ~2021
35719531235971439062471912 ~2021
3572672995092500...96563114 2024
35728464476371456928952712 ~2021
35733506684371467013368712 ~2021
3574033576934503...06931914 2024
35747201564371494403128712 ~2021
3574837644832359...45587914 2024
35749342327171498684654312 ~2021
35749897471171499794942312 ~2021
3575000801213074...89040714 2024
3575285632613074...44044714 2024
35757288302371514576604712 ~2021
35757630161971515260323912 ~2021
35761982137171523964274312 ~2021
35769642659971539285319912 ~2021
3577385264691230...10533715 2024
35774633561971549267123912 ~2021
Home
4.724.182 digits
e-mail
25-04-13