Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11255236901922510473803912 ~2017
11256716821122513433642312 ~2017
11256776327922513552655912 ~2017
11257945469922515890939912 ~2017
11258158416167548950496712 ~2019
11258227380167549364280712 ~2019
11259079285122518158570312 ~2017
11259139517922518279035912 ~2017
11259346474167556078844712 ~2019
11260477403922520954807912 ~2017
11260755748167564534488712 ~2019
11260832732322521665464712 ~2017
11261797207367570783243912 ~2019
11261801804322523603608712 ~2017
11261835969767571015818312 ~2019
11262875717922525751435912 ~2017
11263434956322526869912712 ~2017
11264138430167584830580712 ~2019
11264547731922529095463912 ~2017
11264754756167588528536712 ~2019
11265942146322531884292712 ~2017
11266066411122532132822312 ~2017
11266249004322532498008712 ~2017
11266867835922533735671912 ~2017
11267081315922534162631912 ~2017
Exponent Prime Factor Dig. Year
11267526716322535053432712 ~2017
11267945342322535890684712 ~2017
11267953847922535907695912 ~2017
11268219758322536439516712 ~2017
1126829613715611...76275914 2023
11268467183922536934367912 ~2017
11268748031922537496063912 ~2017
11269781405922539562811912 ~2017
11269826486322539652972712 ~2017
11270998622322541997244712 ~2017
11272057478322544114956712 ~2017
11272245551922544491103912 ~2017
11272251839922544503679912 ~2017
11272622779122545245558312 ~2017
11274273069767645638418312 ~2019
11274320174322548640348712 ~2017
11274917783922549835567912 ~2017
11275707913122551415826312 ~2017
11276684131122553368262312 ~2017
11276710193922553420387912 ~2017
11277515005122555030010312 ~2017
11277815437122555630874312 ~2017
1127806148332323...65559914 2024
11278715977767672295866312 ~2019
11280511387367683068323912 ~2019
Exponent Prime Factor Dig. Year
11280555847122561111694312 ~2017
11280646439922561292879912 ~2017
11281008037122562016074312 ~2017
11281442285922562884571912 ~2017
11281511639922563023279912 ~2017
11281974503922563949007912 ~2017
11282115745122564231490312 ~2017
11282967140322565934280712 ~2017
11283613741122567227482312 ~2017
11284823171922569646343912 ~2017
11286497767122572995534312 ~2017
11287094156322574188312712 ~2017
11287268609922574537219912 ~2017
11287637011122575274022312 ~2017
11287933520322575867040712 ~2017
11288009666322576019332712 ~2017
11288109575367728657451912 ~2019
11288646668322577293336712 ~2017
11289686272167738117632712 ~2019
11290492543122580985086312 ~2017
11291187949122582375898312 ~2017
11291327216322582654432712 ~2017
1129177868872529...26268914 2024
11291803801122583607602312 ~2017
11291978203367751869219912 ~2019
Exponent Prime Factor Dig. Year
11291999405922583998811912 ~2017
11292696788322585393576712 ~2017
11292990533922585981067912 ~2017
11293061051922586122103912 ~2017
11293170849767759025098312 ~2019
11293845857922587691715912 ~2017
11294611421922589222843912 ~2017
1129538689191174...36757714 2024
1129596287813049...77087114 2024
11297257730322594515460712 ~2017
11297450947122594901894312 ~2017
11297759863122595519726312 ~2017
11297994164322595988328712 ~2017
11298295142322596590284712 ~2017
1129830668532892...11436914 2024
11298731069922597462139912 ~2017
11299205186322598410372712 ~2017
11299765202322599530404712 ~2017
11301195644322602391288712 ~2017
11302206005922604412011912 ~2017
11303914295922607828591912 ~2017
11306554771122613109542312 ~2017
11306727458322613454916712 ~2017
11307631273122615262546312 ~2017
11308243481367849460887912 ~2019
Home
4.933.056 digits
e-mail
25-07-20