Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2016920933812541...76600714 2024
20169373141140338746282312 ~2019
20172701639940345403279912 ~2019
20174968393140349936786312 ~2019
20177068409940354136819912 ~2019
20181079069140362158138312 ~2019
20181790943940363581887912 ~2019
20182999184340365998368712 ~2019
2018340100091776...88079314 2024
20188585475940377170951912 ~2019
20190396619140380793238312 ~2019
20190869612340381739224712 ~2019
20191029221940382058443912 ~2019
20191378129140382756258312 ~2019
20192274440340384548880712 ~2019
20194386667140388773334312 ~2019
20194900963140389801926312 ~2019
20197097957940394195915912 ~2019
20197221953940394443907912 ~2019
20198790536340397581072712 ~2019
20199648410340399296820712 ~2019
20199983095140399966190312 ~2019
20200560551940401121103912 ~2019
20201408042340402816084712 ~2019
20202931226340405862452712 ~2019
Exponent Prime Factor Dig. Year
20205955469940411910939912 ~2019
20206547815140413095630312 ~2019
20206828505940413657011912 ~2019
20207198390340414396780712 ~2019
20208299480340416598960712 ~2019
20212622947140425245894312 ~2019
20214698939940429397879912 ~2019
20214919439940429838879912 ~2019
20215048147140430096294312 ~2019
20215672499940431344999912 ~2019
20216445581940432891163912 ~2019
20219456989140438913978312 ~2019
20221671805140443343610312 ~2019
20224460845140448921690312 ~2019
20225117804340450235608712 ~2019
20228338787940456677575912 ~2019
20228658409140457316818312 ~2019
20229137738340458275476712 ~2019
20229340097940458680195912 ~2019
20233242074340466484148712 ~2019
2023502596911821...37219114 2024
20235286073940470572147912 ~2019
20239839865140479679730312 ~2019
20240129423940480258847912 ~2019
20241801403140483602806312 ~2019
Exponent Prime Factor Dig. Year
20243455751940486911503912 ~2019
20243523956340487047912712 ~2019
20244191981940488383963912 ~2019
20245110457140490220914312 ~2019
20247253433940494506867912 ~2019
20248133798340496267596712 ~2019
20248438451940496876903912 ~2019
20249299988340498599976712 ~2019
20250568337940501136675912 ~2019
20252215661940504431323912 ~2019
20253782689140507565378312 ~2019
20254020938340508041876712 ~2019
20254517210340509034420712 ~2019
20254574375940509148751912 ~2019
20254722170340509444340712 ~2019
20255281067940510562135912 ~2019
20257451995140514903990312 ~2019
20258143490340516286980712 ~2019
20258322505140516645010312 ~2019
2025884886591705...45087915 2023
2026134803872431...64644114 2024
20261382427140522764854312 ~2019
20261664215940523328431912 ~2019
20263750475940527500951912 ~2019
20265122852340530245704712 ~2019
Exponent Prime Factor Dig. Year
20266410719940532821439912 ~2019
20268023948340536047896712 ~2019
20270434393140540868786312 ~2019
20270769001140541538002312 ~2019
20270890034340541780068712 ~2019
20271094459140542188918312 ~2019
20271171907140542343814312 ~2019
20271761504340543523008712 ~2019
20271962168340543924336712 ~2019
20272455469140544910938312 ~2019
20272545716340545091432712 ~2019
2027424188593234...47648716 2025
20275836631140551673262312 ~2019
20278359146340556718292712 ~2019
20282050295940564100591912 ~2019
20283646657140567293314312 ~2019
20285404574340570809148712 ~2019
20285686789140571373578312 ~2019
20289339866340578679732712 ~2019
20290986667140581973334312 ~2019
20295704333940591408667912 ~2019
20296653025140593306050312 ~2019
20297002496340594004992712 ~2019
20297014382340594028764712 ~2019
20298326984340596653968712 ~2019
Home
4.828.532 digits
e-mail
25-06-01