Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20456247866340912495732712 ~2019
20456316710340912633420712 ~2019
20456344189140912688378312 ~2019
20457579595140915159190312 ~2019
20458869824340917739648712 ~2019
20461637209140923274418312 ~2019
20462461421940924922843912 ~2019
20463605401140927210802312 ~2019
20464836470340929672940712 ~2019
20471868263940943736527912 ~2019
20472812096340945624192712 ~2019
20475425108340950850216712 ~2019
20475861521940951723043912 ~2019
20476926145140953852290312 ~2019
20480443643940960887287912 ~2019
2048412281293072...21935114 2024
20484720302340969440604712 ~2019
20485393463940970786927912 ~2019
20485861543140971723086312 ~2019
20485929853140971859706312 ~2019
20485969268340971938536712 ~2019
20486334769140972669538312 ~2019
20488142537940976285075912 ~2019
20488548440340977096880712 ~2019
20489998969140979997938312 ~2019
Exponent Prime Factor Dig. Year
20490934211940981868423912 ~2019
20491212596340982425192712 ~2019
20495958080340991916160712 ~2019
20496443333940992886667912 ~2019
20496964171140993928342312 ~2019
20497457282340994914564712 ~2019
20497934753940995869507912 ~2019
20498147881140996295762312 ~2019
20499033121140998066242312 ~2019
20500000697941000001395912 ~2019
20504386945141008773890312 ~2019
2050493986131291...12619115 2023
20506089365941012178731912 ~2019
2050665530573568...23191914 2024
20506961657941013923315912 ~2019
20507249828341014499656712 ~2019
20509713950341019427900712 ~2019
20510787361141021574722312 ~2019
20511866845141023733690312 ~2019
20515052167141030104334312 ~2019
20515925641141031851282312 ~2019
20518872961141037745922312 ~2019
20520014363941040028727912 ~2019
20520326480341040652960712 ~2019
20521993843141043987686312 ~2019
Exponent Prime Factor Dig. Year
20524212269941048424539912 ~2019
20526946027141053892054312 ~2019
20527216555141054433110312 ~2019
20527555631941055111263912 ~2019
20528623733941057247467912 ~2019
20529026657941058053315912 ~2019
20531461469941062922939912 ~2019
20533199755141066399510312 ~2019
2053404042675133...06675114 2024
20535398312341070796624712 ~2019
20535507218341071014436712 ~2019
20536167236341072334472712 ~2019
20537042510341074085020712 ~2019
20537227769941074455539912 ~2019
20537305664341074611328712 ~2019
2053848099371807...27445714 2024
20539207325941078414651912 ~2019
20539972988341079945976712 ~2019
2054114203512464...44212114 2024
2054124207616737...00960914 2024
20541505976341083011952712 ~2019
20542882633141085765266312 ~2019
20543211361141086422722312 ~2019
20545990964341091981928712 ~2019
20546637134341093274268712 ~2019
Exponent Prime Factor Dig. Year
20548294225141096588450312 ~2019
20550042307141100084614312 ~2019
20551323469141102646938312 ~2019
20551561381141103122762312 ~2019
20551648496341103296992712 ~2019
20553762895141107525790312 ~2019
20556182588341112365176712 ~2019
20556588457141113176914312 ~2019
20556598453141113196906312 ~2019
20556994891141113989782312 ~2019
20558120791141116241582312 ~2019
20558951198341117902396712 ~2019
20559228497941118456995912 ~2019
20561748739141123497478312 ~2019
20563266872341126533744712 ~2019
20564835215941129670431912 ~2019
20566559557141133119114312 ~2019
20566705453141133410906312 ~2019
20567995615141135991230312 ~2019
20568554881141137109762312 ~2019
2056990504933414...38183914 2023
20571038039941142076079912 ~2019
20572075646341144151292712 ~2019
2057563217091646...73672114 2024
20577098126341154196252712 ~2019
Home
4.828.532 digits
e-mail
25-06-01