Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20298761912340597523824712 ~2019
20299508582340599017164712 ~2019
20299646894340599293788712 ~2019
20299744795140599489590312 ~2019
20301638095140603276190312 ~2019
2030203595994913...02295914 2024
20302204159140604408318312 ~2019
20306543257140613086514312 ~2019
20307235897140614471794312 ~2019
20308151191140616302382312 ~2019
20309548316340619096632712 ~2019
20310622843140621245686312 ~2019
20311062073140622124146312 ~2019
20312254568340624509136712 ~2019
20313021935940626043871912 ~2019
20315717873940631435747912 ~2019
20316164113140632328226312 ~2019
20320605692340641211384712 ~2019
20321077997940642155995912 ~2019
20322438025140644876050312 ~2019
2032600333139756...99024114 2025
20328310844340656621688712 ~2019
20328606266340657212532712 ~2019
20329714585140659429170312 ~2019
20331138475140662276950312 ~2019
Exponent Prime Factor Dig. Year
20335943324340671886648712 ~2019
20336025314340672050628712 ~2019
20340814994340681629988712 ~2019
20341004887140682009774312 ~2019
20341413139140682826278312 ~2019
20344892969940689785939912 ~2019
2034604258214516...53226314 2024
20348273759940696547519912 ~2019
20350150112340700300224712 ~2019
20350372457940700744915912 ~2019
2035055582872442...99444114 2024
20351411867940702823735912 ~2019
20355178913940710357827912 ~2019
20356478594340712957188712 ~2019
20356830719940713661439912 ~2019
20358951781140717903562312 ~2019
20361128432340722256864712 ~2019
20362097855940724195711912 ~2019
20362195645140724391290312 ~2019
20362583485140725166970312 ~2019
20362942985940725885971912 ~2019
20363324435940726648871912 ~2019
20365893620340731787240712 ~2019
2036655501111405...57659115 2025
20367559129140735118258312 ~2019
Exponent Prime Factor Dig. Year
20368006537140736013074312 ~2019
20370564446340741128892712 ~2019
20370698618340741397236712 ~2019
20371050917940742101835912 ~2019
20375328301140750656602312 ~2019
20378414144340756828288712 ~2019
20380668169140761336338312 ~2019
20385480788340770961576712 ~2019
20386408537140772817074312 ~2019
20388020081940776040163912 ~2019
20388780301140777560602312 ~2019
20388885560340777771120712 ~2019
20389274669940778549339912 ~2019
20389674389940779348779912 ~2019
20389803481140779606962312 ~2019
20391434803140782869606312 ~2019
20396085536340792171072712 ~2019
20396896171140793792342312 ~2019
20400648955140801297910312 ~2019
20400941071140801882142312 ~2019
20404315399140808630798312 ~2019
20405318303940810636607912 ~2019
20406867260340813734520712 ~2019
20407124627940814249255912 ~2019
20407201778340814403556712 ~2019
Exponent Prime Factor Dig. Year
20409085075140818170150312 ~2019
20410286276340820572552712 ~2019
20410935749940821871499912 ~2019
20411189435940822378871912 ~2019
20422190888340844381776712 ~2019
20424222203940848444407912 ~2019
20425534519140851069038312 ~2019
20425639943940851279887912 ~2019
20426146103940852292207912 ~2019
20426351203140852702406312 ~2019
20427683396340855366792712 ~2019
20428469467140856938934312 ~2019
20431167575940862335151912 ~2019
20432699684340865399368712 ~2019
20435300465940870600931912 ~2019
2043622783192820...40802314 2024
20438778865140877557730312 ~2019
20439018077940878036155912 ~2019
20440147667940880295335912 ~2019
20440861699140881723398312 ~2019
20443392515940886785031912 ~2019
20445726481140891452962312 ~2019
20448339896340896679792712 ~2019
20449015817940898031635912 ~2019
20449555147140899110294312 ~2019
Home
4.828.532 digits
e-mail
25-06-01