Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11363175944322726351888712 ~2017
11364585446322729170892712 ~2017
11364722305122729444610312 ~2017
1136473590473000...78840914 2024
11365272194322730544388712 ~2017
11365379893122730759786312 ~2017
11365797401922731594803912 ~2017
11366769775122733539550312 ~2017
11367044369922734088739912 ~2017
11368270355922736540711912 ~2017
11369490032322738980064712 ~2017
11369819040168218914240712 ~2019
11370939989922741879979912 ~2017
11373174557922746349115912 ~2017
11373207554322746415108712 ~2017
11373399281922746798563912 ~2017
11374042183122748084366312 ~2017
11374628083122749256166312 ~2017
11375431781922750863563912 ~2017
11377829066322755658132712 ~2017
11378395964322756791928712 ~2017
11380095116322760190232712 ~2017
11380552748322761105496712 ~2017
11381035766322762071532712 ~2017
11381719909122763439818312 ~2017
Exponent Prime Factor Dig. Year
11384083429122768166858312 ~2017
11384793872322769587744712 ~2017
11385512335368313074011912 ~2019
11385669007122771338014312 ~2017
11386086619368316519715912 ~2019
11386196431122772392862312 ~2017
11386539367122773078734312 ~2017
11389263027768335578166312 ~2019
11389541238168337247428712 ~2019
11390255439768341532638312 ~2019
11390259806322780519612712 ~2017
11394375443922788750887912 ~2017
11394591871122789183742312 ~2017
11395085206168370511236712 ~2019
11395408949922790817899912 ~2017
11396241347922792482695912 ~2017
11396624816322793249632712 ~2017
11396764043922793528087912 ~2017
11397351752322794703504712 ~2017
11397757927768386547566312 ~2019
11397921545922795843091912 ~2017
11398338169122796676338312 ~2017
11398998407922797996815912 ~2017
11399400512322798801024712 ~2017
11399688965922799377931912 ~2017
Exponent Prime Factor Dig. Year
11399730338322799460676712 ~2017
11399892032322799784064712 ~2017
11401191119922802382239912 ~2017
11401344509922802689019912 ~2017
11401677959922803355919912 ~2017
11402131631922804263263912 ~2017
11402330522322804661044712 ~2017
11402354215122804708430312 ~2017
11403237842322806475684712 ~2017
11403383015922806766031912 ~2017
11403403250322806806500712 ~2017
11403412499922806824999912 ~2017
11404329848322808659696712 ~2017
11404613138322809226276712 ~2017
11404806164322809612328712 ~2017
11406610538322813221076712 ~2017
11406792458322813584916712 ~2017
11406845314168441071884712 ~2019
11407868495922815736991912 ~2017
11409696734322819393468712 ~2017
11410769085768464614514312 ~2019
11411205410322822410820712 ~2017
11412247766322824495532712 ~2017
11412900133122825800266312 ~2017
11413214480322826428960712 ~2017
Exponent Prime Factor Dig. Year
11415199319922830398639912 ~2017
11415435504168492613024712 ~2019
11416322585922832645171912 ~2017
11416740025122833480050312 ~2017
11417073569922834147139912 ~2017
11417472221922834944443912 ~2017
11417985793122835971586312 ~2017
11418004872168508029232712 ~2019
11418148519122836297038312 ~2017
11418509367768511056206312 ~2019
1141992145677126...88980914 2024
11420032151368520192907912 ~2019
11420678297922841356595912 ~2017
11421231014322842462028712 ~2017
11421286177122842572354312 ~2017
11421584624322843169248712 ~2017
11422229057922844458115912 ~2017
11422363058322844726116712 ~2017
11422716959922845433919912 ~2017
11423560069122847120138312 ~2017
11425802429922851604859912 ~2017
11426790509922853581019912 ~2017
11427050599122854101198312 ~2017
11427127843122854255686312 ~2017
11428214005122856428010312 ~2017
Home
4.933.056 digits
e-mail
25-07-20