Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12530284795125060569590312 ~2018
12530386034325060772068712 ~2018
1253133608833809...70843314 2023
12531432305925062864611912 ~2018
12531835178325063670356712 ~2018
12531890281125063780562312 ~2018
12532019329125064038658312 ~2018
12532423115925064846231912 ~2018
12532973820175197842920712 ~2019
12533375636325066751272712 ~2018
12534929005775209574034312 ~2019
12535292540325070585080712 ~2018
12535787137125071574274312 ~2018
12536003197125072006394312 ~2018
12536478383925072956767912 ~2018
12536529503925073059007912 ~2018
12539586512325079173024712 ~2018
12541790041125083580082312 ~2018
12541895714325083791428712 ~2018
12541921955925083843911912 ~2018
12543330005925086660011912 ~2018
12543917047775263502286312 ~2019
12545732359125091464718312 ~2018
12546378503925092757007912 ~2018
12546642521925093285043912 ~2018
Exponent Prime Factor Dig. Year
12547242580175283455480712 ~2019
12547922894325095845788712 ~2018
12548276735925096553471912 ~2018
12548345531925096691063912 ~2018
12549434807925098869615912 ~2018
12549774313125099548626312 ~2018
12549985931925099971863912 ~2018
12550075284175300451704712 ~2019
1255162915313112...29968914 2024
12552785977125105571954312 ~2018
12553266650325106533300712 ~2018
12553840637925107681275912 ~2018
12554150113125108300226312 ~2018
12554155261125108310522312 ~2018
12554344531775326067190312 ~2019
12555788681925111577363912 ~2018
12558818535775352911214312 ~2019
12559569037775357414226312 ~2019
12561483967125122967934312 ~2018
12562542044325125084088712 ~2018
12563028753775378172522312 ~2019
12563538380325127076760712 ~2018
12563548285125127096570312 ~2018
12563641898325127283796712 ~2018
12564499628325128999256712 ~2018
Exponent Prime Factor Dig. Year
12564520874325129041748712 ~2018
12564615617375387693703912 ~2019
12565309201775391855210312 ~2019
1256564839912337...02232714 2024
12565757132325131514264712 ~2018
12571116344325142232688712 ~2018
12571576106325143152212712 ~2018
12572709721125145419442312 ~2018
12572788544325145577088712 ~2018
12572855275125145710550312 ~2018
12573435413925146870827912 ~2018
12573871015125147742030312 ~2018
12574598347775447590086312 ~2019
12574796453925149592907912 ~2018
12575804321925151608643912 ~2018
12575960125775455760754312 ~2019
12575992407775455954446312 ~2019
12576325679925152651359912 ~2018
12576676489125153352978312 ~2018
12576803671125153607342312 ~2018
12577083584325154167168712 ~2018
12577326427125154652854312 ~2018
12578530579125157061158312 ~2018
12579152797125158305594312 ~2018
12579903049125159806098312 ~2018
Exponent Prime Factor Dig. Year
12580738826325161477652712 ~2018
12581277643125162555286312 ~2018
12581818887775490913326312 ~2019
12582162475125164324950312 ~2018
12584309557125168619114312 ~2018
12584668598325169337196712 ~2018
12584827628325169655256712 ~2018
1258587281892617...46331314 2024
12588168188325176336376712 ~2018
12588540377925177080755912 ~2018
12588723287925177446575912 ~2018
12589253353125178506706312 ~2018
12590016254325180032508712 ~2018
12590190487125180380974312 ~2018
12590923583925181847167912 ~2018
12592432352325184864704712 ~2018
12593516988175561101928712 ~2019
12593746801125187493602312 ~2018
12594241633125188483266312 ~2018
12594437957925188875915912 ~2018
12594935475775569612854312 ~2019
12596538362325193076724712 ~2018
12597129809375582778855912 ~2019
12597306439125194612878312 ~2018
12597964121925195928243912 ~2018
Home
4.933.056 digits
e-mail
25-07-20