Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12598074083925196148167912 ~2018
12598084327375588505963912 ~2019
12598396889925196793779912 ~2018
12599426383125198852766312 ~2018
12599490284325198980568712 ~2018
12600889232325201778464712 ~2018
12601471367925202942735912 ~2018
1260220079331890...18995114 2024
12602903503125205807006312 ~2018
12603193631925206387263912 ~2018
12605895583125211791166312 ~2018
12607365734325214731468712 ~2018
12607716818325215433636712 ~2018
12607872167925215744335912 ~2018
12608026963125216053926312 ~2018
12611381713375668290279912 ~2019
12611925644325223851288712 ~2018
12612425003925224850007912 ~2018
1261413428395777...02026314 2024
12614995753775689974522312 ~2019
12615239445775691436674312 ~2019
12617334830325234669660712 ~2018
1261765728975148...74197714 2023
12619199059125238398118312 ~2018
12619626996175717761976712 ~2019
Exponent Prime Factor Dig. Year
12620531576325241063152712 ~2018
12620852147925241704295912 ~2018
1262188033076386...47334314 2023
12622065769125244131538312 ~2018
12623276819925246553639912 ~2018
12623779405125247558810312 ~2018
12623871079125247742158312 ~2018
12624218903925248437807912 ~2018
12625016174325250032348712 ~2018
12625261319925250522639912 ~2018
12625430402325250860804712 ~2018
12626718791925253437583912 ~2018
12627094392175762566352712 ~2019
12627121231125254242462312 ~2018
12627377975925254755951912 ~2018
12627670694325255341388712 ~2018
12628623007125257246014312 ~2018
12629363705925258727411912 ~2018
12630112087125260224174312 ~2018
12630427532325260855064712 ~2018
12630478619375782871715912 ~2019
12630800399925261600799912 ~2018
12631416326325262832652712 ~2018
12631549878175789299268712 ~2019
12632525059125265050118312 ~2018
Exponent Prime Factor Dig. Year
12632865032325265730064712 ~2018
12633381131925266762263912 ~2018
12633850721925267701443912 ~2018
12634190941125268381882312 ~2018
12634191845925268383691912 ~2018
12634328581125268657162312 ~2018
12634376609925268753219912 ~2018
12635468167125270936334312 ~2018
12635861683125271723366312 ~2018
12636010897125272021794312 ~2018
12636407633925272815267912 ~2018
12636440888325272881776712 ~2018
1263681997071819...75780914 2024
1263783616737658...17383914 2025
12638695789125277391578312 ~2018
12639310883925278621767912 ~2018
12639450163125278900326312 ~2018
12641125181925282250363912 ~2018
12641163545925282327091912 ~2018
12641352331125282704662312 ~2018
12641391685125282783370312 ~2018
12642258947925284517895912 ~2018
12642326954325284653908712 ~2018
12643476769125286953538312 ~2018
12643673891925287347783912 ~2018
Exponent Prime Factor Dig. Year
12644680889925289361779912 ~2018
12645658853925291317707912 ~2018
12645853088325291706176712 ~2018
12646015202325292030404712 ~2018
12647446199925294892399912 ~2018
12648859465125297718930312 ~2018
12649213189125298426378312 ~2018
12649259738325298519476712 ~2018
12651975659375911853955912 ~2019
12652026917375912161503912 ~2019
12652207094325304414188712 ~2018
12652369127925304738255912 ~2018
12652442618325304885236712 ~2018
12652857698325305715396712 ~2018
12653273401125306546802312 ~2018
12654656792325309313584712 ~2018
12655004078325310008156712 ~2018
12655274291925310548583912 ~2018
12655677380325311354760712 ~2018
12657123611925314247223912 ~2018
12658927333775953564002312 ~2019
12659692712325319385424712 ~2018
12661178927375967073563912 ~2019
12661236032325322472064712 ~2018
12662729516325325459032712 ~2018
Home
4.933.056 digits
e-mail
25-07-20