Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13200570321779203421930312 ~2019
13201009255126402018510312 ~2018
1320146166492825...96288714 2024
13201867435126403734870312 ~2018
13202953117126405906234312 ~2018
13202998259926405996519912 ~2018
13205347153126410694306312 ~2018
13207442801926414885603912 ~2018
13208398643926416797287912 ~2018
1320899045332853...37912914 2024
13209036992326418073984712 ~2018
13209820571926419641143912 ~2018
13210167761926420335523912 ~2018
13211349008326422698016712 ~2018
1321223052131561...76176715 2025
13212600983926425201967912 ~2018
13214003857126428007714312 ~2018
13214970038326429940076712 ~2018
13215023249926430046499912 ~2018
13215065413126430130826312 ~2018
13216113779379296682675912 ~2019
13217629058326435258116712 ~2018
13218721333126437442666312 ~2018
13219104200326438208400712 ~2018
13219204585126438409170312 ~2018
Exponent Prime Factor Dig. Year
13220086531126440173062312 ~2018
13220220697126440441394312 ~2018
13221685661926443371323912 ~2018
1322222108033199...01432714 2024
13222894225379337365351912 ~2019
13223866332179343197992712 ~2019
13224584549926449169099912 ~2018
13224653282326449306564712 ~2018
13225937971126451875942312 ~2018
13227327620326454655240712 ~2018
13229348261379376089567912 ~2019
13230128629126460257258312 ~2018
13232324263126464648526312 ~2018
13232964647926465929295912 ~2018
13233438171779400629030312 ~2019
13233943964326467887928712 ~2018
13234098797926468197595912 ~2018
13234256455126468512910312 ~2018
13234973039379409838235912 ~2019
13235722862326471445724712 ~2018
13236105371926472210743912 ~2018
13236462449926472924899912 ~2018
13236645866326473291732712 ~2018
13236735553126473471106312 ~2018
13237765369779426592218312 ~2019
Exponent Prime Factor Dig. Year
13239235901379435415407912 ~2019
13240085822326480171644712 ~2018
13240095926326480191852712 ~2018
13243139377126486278754312 ~2018
13244556954179467341724712 ~2019
13245193433926490386867912 ~2018
1324526341693814...64067314 2024
13247239061926494478123912 ~2018
13248315806326496631612712 ~2018
13250655748179503934488712 ~2019
13251446311126502892622312 ~2018
13251678161926503356323912 ~2018
13252420884179514525304712 ~2019
13252702376326505404752712 ~2018
13252950271126505900542312 ~2018
13253876875126507753750312 ~2018
13253907641926507815283912 ~2018
13254519917379527119503912 ~2019
13254837517126509675034312 ~2018
13255633298326511266596712 ~2018
13255845793126511691586312 ~2018
13256053069126512106138312 ~2018
13256255601779537533610312 ~2019
13256464292326512928584712 ~2018
13256762329126513524658312 ~2018
Exponent Prime Factor Dig. Year
13256936281126513872562312 ~2018
13257106477126514212954312 ~2018
13257481780179544890680712 ~2019
13258640058179551840348712 ~2019
13259517373126519034746312 ~2018
13259904565126519809130312 ~2018
13260536311779563217870312 ~2019
13260704839126521409678312 ~2018
13260965105926521930211912 ~2018
13261007390326522014780712 ~2018
13263273536326526547072712 ~2018
13263948319126527896638312 ~2018
13264723333126529446666312 ~2018
13266067949926532135899912 ~2018
13266191323126532382646312 ~2018
13267061305779602367834312 ~2019
13269114919126538229838312 ~2018
13270299596326540599192712 ~2018
1327126770293822...98435314 2024
13271277755926542555511912 ~2018
13271840623126543681246312 ~2018
13276268020179657608120712 ~2019
13276609703926553219407912 ~2018
13278825384179672952304712 ~2019
13280452669126560905338312 ~2018
Home
4.933.056 digits
e-mail
25-07-20