Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15441202519130882405038312 ~2018
15441738221930883476443912 ~2018
15441830084330883660168712 ~2018
15444087221930888174443912 ~2018
15445224236330890448472712 ~2018
15446568629930893137259912 ~2018
15450474320330900948640712 ~2018
15451335728330902671456712 ~2018
15451703743130903407486312 ~2018
15451875769130903751538312 ~2018
15453598657130907197314312 ~2018
15456059717930912119435912 ~2018
15456969524330913939048712 ~2018
15457053889130914107778312 ~2018
15457204391930914408783912 ~2018
15457526783930915053567912 ~2018
15457548095930915096191912 ~2018
1545761089093431...17779914 2024
15459301025930918602051912 ~2018
15460675265930921350531912 ~2018
15460958029130921916058312 ~2018
15462730961930925461923912 ~2018
15463290578330926581156712 ~2018
15464773597130929547194312 ~2018
15465847087130931694174312 ~2018
Exponent Prime Factor Dig. Year
15466553231930933106463912 ~2018
15467054648330934109296712 ~2018
15467856445130935712890312 ~2018
15470406494330940812988712 ~2018
15471025943930942051887912 ~2018
15472919456330945838912712 ~2018
15474038702330948077404712 ~2018
15474117685130948235370312 ~2018
15476114527130952229054312 ~2018
15476968286330953936572712 ~2018
1548347035092601...18951314 2024
15486001847930972003695912 ~2018
15486508279130973016558312 ~2018
15488695123130977390246312 ~2018
15489168121130978336242312 ~2018
15490567514330981135028712 ~2018
15490824151130981648302312 ~2018
15492203756330984407512712 ~2018
15493692680330987385360712 ~2018
15493857355130987714710312 ~2018
15494535275930989070551912 ~2018
15496157300330992314600712 ~2018
15496207631930992415263912 ~2018
15497288192330994576384712 ~2018
15497916962330995833924712 ~2018
Exponent Prime Factor Dig. Year
15498440983130996881966312 ~2018
15503550545931007101091912 ~2018
15503619122331007238244712 ~2018
15505741346331011482692712 ~2018
15507044471931014088943912 ~2018
15507540947931015081895912 ~2018
15507655067931015310135912 ~2018
15508530509931017061019912 ~2018
15510199825131020399650312 ~2018
15510709199931021418399912 ~2018
15510793661931021587323912 ~2018
15511166561931022333123912 ~2018
15511660597131023321194312 ~2018
15511716599931023433199912 ~2018
15515178313131030356626312 ~2018
15515542609131031085218312 ~2018
15516455749131032911498312 ~2018
15517497973131034995946312 ~2018
15517672775931035345551912 ~2018
15518815645131037631290312 ~2018
15521385961131042771922312 ~2018
15522544783131045089566312 ~2018
15524205109131048410218312 ~2018
15525654649131051309298312 ~2018
15526537724331053075448712 ~2018
Exponent Prime Factor Dig. Year
1552821503393260...57119114 2024
15528262931931056525863912 ~2018
15528317431131056634862312 ~2018
15529723994331059447988712 ~2018
15530484965931060969931912 ~2018
15530698279131061396558312 ~2018
15533166493131066332986312 ~2018
15533835686331067671372712 ~2018
15535504556331071009112712 ~2018
15536174665131072349330312 ~2018
15536349931131072699862312 ~2018
15537723509931075447019912 ~2018
15539914265931079828531912 ~2018
15541770746331083541492712 ~2018
15541776245931083552491912 ~2018
15541954346331083908692712 ~2018
15543476363931086952727912 ~2018
15544014247131088028494312 ~2018
1554408031431865...37716114 2024
1554551597872642...16379114 2025
15545723264331091446528712 ~2018
15548919917931097839835912 ~2018
15548952371931097904743912 ~2018
1554929933338334...42648914 2025
15550952851131101905702312 ~2018
Home
4.828.532 digits
e-mail
25-06-01