Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1349690140799312...71451114 2025
13497364352326994728704712 ~2018
13498217506180989305036712 ~2019
13499577127126999154254312 ~2018
1350041332794779...18076714 2023
13500521382181003128292712 ~2019
13502376523127004753046312 ~2018
13503615655127007231310312 ~2018
13503893533127007787066312 ~2018
13503992006327007984012712 ~2018
13505051329127010102658312 ~2018
13506167060327012334120712 ~2018
13506190523927012381047912 ~2018
13506326984327012653968712 ~2018
13506887959381041327755912 ~2019
13507774172327015548344712 ~2018
13508545908181051275448712 ~2019
13509330331381055981987912 ~2019
13509566267381057397603912 ~2019
13510592420327021184840712 ~2018
13513258442327026516884712 ~2018
13513703195927027406391912 ~2018
13513770364181082622184712 ~2019
13513972074181083832444712 ~2019
13514717299127029434598312 ~2018
Exponent Prime Factor Dig. Year
13515536347127031072694312 ~2018
13515790007927031580015912 ~2018
13515910700327031821400712 ~2018
13516201223927032402447912 ~2018
13516827656327033655312712 ~2018
13518110869781108665218312 ~2019
13519257065927038514131912 ~2018
13519756139927039512279912 ~2018
13519966811927039933623912 ~2018
13519994881127039989762312 ~2018
13520242472327040484944712 ~2018
1352049929395543...10499114 2023
13520560173781123361042312 ~2019
13522375508327044751016712 ~2018
13523203289927046406579912 ~2018
13523269033127046538066312 ~2018
13523318711381139912267912 ~2019
13524044809781144268858312 ~2019
13524416963927048833927912 ~2018
13524605995127049211990312 ~2018
13524654313781147925882312 ~2019
13524922447127049844894312 ~2018
13525195364327050390728712 ~2018
13527253009127054506018312 ~2018
13527445111127054890222312 ~2018
Exponent Prime Factor Dig. Year
13527576476327055152952712 ~2018
13527713465927055426931912 ~2018
13528557666181171345996712 ~2019
1352875262511875...38388715 2024
13529097704327058195408712 ~2018
13530511688327061023376712 ~2018
13530546431927061092863912 ~2018
13531255961927062511923912 ~2018
13531300945127062601890312 ~2018
13532779889927065559779912 ~2018
13533119501927066239003912 ~2018
13533482039927066964079912 ~2018
1353388072137876...79796714 2025
13533919316327067838632712 ~2018
13534669496327069338992712 ~2018
13534963499927069926999912 ~2018
13535254496327070508992712 ~2018
13535974055927071948111912 ~2018
13536085868327072171736712 ~2018
13536289153781217734922312 ~2019
13536616556327073233112712 ~2018
13536714175127073428350312 ~2018
13537085731127074171462312 ~2018
13537142201927074284403912 ~2018
13537790141927075580283912 ~2018
Exponent Prime Factor Dig. Year
13538052275927076104551912 ~2018
13539049433381234296599912 ~2019
1353969340811516...61707314 2025
13539981881927079963763912 ~2018
13540415635127080831270312 ~2018
13540893626327081787252712 ~2018
13541005451381246032707912 ~2019
13541134532327082269064712 ~2018
13541460493127082920986312 ~2018
13541490698327082981396712 ~2018
13542068822327084137644712 ~2018
13542397891781254387350312 ~2019
13543919353127087838706312 ~2018
13544039153927088078307912 ~2018
13548257216327096514432712 ~2018
13549153331927098306663912 ~2018
13549805018327099610036712 ~2018
13550781785927101563571912 ~2018
13550913193127101826386312 ~2018
13551110809127102221618312 ~2018
13551192245927102384491912 ~2018
13551357998327102715996712 ~2018
13551851043781311106262312 ~2019
13552266301127104532602312 ~2018
13552375958327104751916712 ~2018
Home
4.933.056 digits
e-mail
25-07-20