Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13552488097127104976194312 ~2018
13553239352327106478704712 ~2018
13553879581127107759162312 ~2018
13554307544327108615088712 ~2018
13554463808327108927616712 ~2018
13555731629927111463259912 ~2018
13556881892327113763784712 ~2018
13557158513927114317027912 ~2018
13557160291381342961747912 ~2019
13557549590327115099180712 ~2018
13557858134327115716268712 ~2018
13558655678327117311356712 ~2018
13559455301927118910603912 ~2018
13559672391781358034350312 ~2019
13561112693927122225387912 ~2018
13561431056327122862112712 ~2018
13561867219127123734438312 ~2018
13562751025127125502050312 ~2018
13563813092327127626184712 ~2018
13564611124181387666744712 ~2019
1356637021013255...50424114 2024
13566520325927133040651912 ~2018
13567430607781404583646312 ~2019
13567720727927135441455912 ~2018
13569255713927138511427912 ~2018
Exponent Prime Factor Dig. Year
1356931797611278...33486315 2023
13569650942327139301884712 ~2018
13570361498327140722996712 ~2018
13572271097927144542195912 ~2018
1357258430698143...84140114 2025
13573586993927147173987912 ~2018
13573752431927147504863912 ~2018
13573878677927147757355912 ~2018
13574487841127148975682312 ~2018
13575622759127151245518312 ~2018
13575843524327151687048712 ~2018
1357627934293801...16012114 2024
1357686535078390...86732714 2025
13576995476327153990952712 ~2018
13577238176327154476352712 ~2018
1357736815317196...21143114 2025
13577517761927155035523912 ~2018
13578622958327157245916712 ~2018
13580067121127160134242312 ~2018
13580439543781482637262312 ~2019
13581963275927163926551912 ~2018
13582799828327165599656712 ~2018
13583005991927166011983912 ~2018
13583953419781503720518312 ~2019
13584928940327169857880712 ~2018
Exponent Prime Factor Dig. Year
13586496879781518981278312 ~2019
13587122891927174245783912 ~2018
13587304736327174609472712 ~2018
13587415691927174831383912 ~2018
13588980251927177960503912 ~2018
13589392721927178785443912 ~2018
13589847313127179694626312 ~2018
1359101346971247...65184715 2025
13591772791781550636750312 ~2019
13592504474327185008948712 ~2018
13592763668327185527336712 ~2018
13592987797127185975594312 ~2018
13593301562327186603124712 ~2018
13594292861927188585723912 ~2018
13595095901927190191803912 ~2018
13595247947927190495895912 ~2018
13598219834327196439668712 ~2018
13598554513127197109026312 ~2018
13599199915127198399830312 ~2018
13599807800327199615600712 ~2018
13599843415127199686830312 ~2018
13599978589127199957178312 ~2018
13600859755127201719510312 ~2018
13601022911927202045823912 ~2018
13601523559127203047118312 ~2018
Exponent Prime Factor Dig. Year
13601546849381609281095912 ~2019
1360187507935223...30451314 2023
13604745107927209490215912 ~2018
13606140499381636842995912 ~2019
13606353943127212707886312 ~2018
13608591121127217182242312 ~2018
13608610034327217220068712 ~2018
13611245269127222490538312 ~2018
13612089397127224178794312 ~2018
13613015926181678095556712 ~2019
1361360624712940...49373714 2024
13613813270327227626540712 ~2018
13613911712327227823424712 ~2018
13613950604327227901208712 ~2018
13614143635127228287270312 ~2018
13615006592327230013184712 ~2018
13616398265927232796531912 ~2018
13616804503127233609006312 ~2018
13618002338327236004676712 ~2018
13618363865927236727731912 ~2018
13618979159927237958319912 ~2018
13619454482327238908964712 ~2018
13621025363927242050727912 ~2018
13621942274327243884548712 ~2018
13622293079927244586159912 ~2018
Home
4.933.056 digits
e-mail
25-07-20