Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2132460234264920479 ~1996
213254533127952719910 ~1997
2132608914265217839 ~1996
213263833127958299910 ~1997
213264851170611880910 ~1998
2132653794265307599 ~1996
213265733127959439910 ~1997
2132671794265343599 ~1996
213269821127961892710 ~1997
2132726514265453039 ~1996
2132747394265494799 ~1996
213281539725157232710 ~1999
2132907834265815679 ~1996
2132946114265892239 ~1996
213295241127977144710 ~1997
2132953314265906639 ~1996
2133011394266022799 ~1996
213303119170642495310 ~1998
2133043794266087599 ~1996
2133151434266302879 ~1996
213315581170652464910 ~1998
213315587383968056710 ~1998
213326111170660888910 ~1998
2133274794266549599 ~1996
213342797128005678310 ~1997
Exponent Prime Factor Digits Year
213344773128006863910 ~1997
213353801128012280710 ~1997
2133604194267208399 ~1996
2133608394267216799 ~1996
2133653634267307279 ~1996
2133794514267589039 ~1996
2133810234267620479 ~1996
213384419170707535310 ~1998
213387197128032318310 ~1997
2133960834267921679 ~1996
2133984114267968239 ~1996
213398599213398599110 ~1998
2134045314268090639 ~1996
2134121034268242079 ~1996
2134194834268389679 ~1996
2134201914268403839 ~1996
213421753128053051910 ~1997
213425197128055118310 ~1997
213429193128057515910 ~1997
213433291213433291110 ~1998
2134380594268761199 ~1996
2134462314268924639 ~1996
213447851170758280910 ~1998
2134514994269029999 ~1996
2134515594269031199 ~1996
Exponent Prime Factor Digits Year
2134538994269077999 ~1996
2134576314269152639 ~1996
213459977128075986310 ~1997
2134614834269229679 ~1996
2134640394269280799 ~1996
2134692714269385439 ~1996
2134703034269406079 ~1996
213471721469637786310 ~1999
213471997128083198310 ~1997
2134779234269558479 ~1996
213482099170785679310 ~1998
2134879194269758399 ~1996
2134889394269778799 ~1996
2134900194269800399 ~1996
2134955394269910799 ~1996
2134960914269921839 ~1996
213498401170798720910 ~1998
2135017914270035839 ~1996
213508657128105194310 ~1997
213508781170807024910 ~1998
2135156514270313039 ~1996
213516599170813279310 ~1998
2135175234270350479 ~1996
213535853128121511910 ~1997
213537193128122315910 ~1997
Exponent Prime Factor Digits Year
2135408514270817039 ~1996
2135414394270828799 ~1996
213547949683353436910 ~1999
2135531394271062799 ~1996
213560093298984130310 ~1998
2135639514271279039 ~1996
2135658114271316239 ~1996
2135714994271429999 ~1996
2135800434271600879 ~1996
2135823714271647439 ~1996
213586853128152111910 ~1997
2135877234271754479 ~1996
2135878794271757599 ~1996
213588601341741761710 ~1998
2135905794271811599 ~1996
213594259213594259110 ~1998
2135967834271935679 ~1996
213599861128159916710 ~1997
213599909170879927310 ~1998
2136106194272212399 ~1996
213615011170892008910 ~1998
2136153594272307199 ~1996
213621367213621367110 ~1998
2136267234272534479 ~1996
2136278034272556079 ~1996
Home
4.739.325 digits
e-mail
25-04-20