Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1938907313877814639 ~1996
1938931313877862639 ~1996
193897993116338795910 ~1997
1938988793877977599 ~1996
1938993833877987679 ~1996
1939089593878179199 ~1996
1939100393878200799 ~1996
1939205393878410799 ~1996
193921199155136959310 ~1997
193921667155137333710 ~1997
1939224713878449439 ~1996
1939275113878550239 ~1996
193928261116356956710 ~1997
1939388513878777039 ~1996
1939406513878813039 ~1996
1939419593878839199 ~1996
193943917116366350310 ~1997
193951237310321979310 ~1998
1939546193879092399 ~1996
1939618433879236879 ~1996
1939627612133590371111 ~2000
1939801793879603599 ~1996
1939819793879639599 ~1996
193989137116393482310 ~1997
1939902713879805439 ~1996
Exponent Prime Factor Digits Year
193992941116395764710 ~1997
1939942313879884639 ~1996
193994233116396539910 ~1997
1940028833880057679 ~1996
194003497116402098310 ~1997
1940057393880114799 ~1996
1940093393880186799 ~1996
1940154113880308239 ~1996
194031221116418732710 ~1997
1940498993880997999 ~1996
1940516993881033999 ~1996
1940548313881096639 ~1996
1940551433881102879 ~1996
1940581313881162639 ~1996
194059181155247344910 ~1997
1940610713881221439 ~1996
1940631233881262479 ~1996
1940640233881280479 ~1996
194072911931549972910 ~1999
1940771993881543999 ~1996
1940882033881764079 ~1996
194088617116453170310 ~1997
194094781116456868710 ~1997
1941090593882181199 ~1996
1941130433882260879 ~1996
Exponent Prime Factor Digits Year
194116567194116567110 ~1997
1941259313882518639 ~1996
1941276233882552479 ~1996
194131571155305256910 ~1997
194138621155310896910 ~1997
194142673116485603910 ~1997
1941428033882856079 ~1996
1941439913882879839 ~1996
1941449033882898079 ~1996
1941462233882924479 ~1996
1941481313882962639 ~1996
1941523793883047599 ~1996
1941575393883150799 ~1996
1941579593883159199 ~1996
1941656513883313039 ~1996
1941692033883384079 ~1996
1941719033883438079 ~1996
1941826433883652879 ~1996
1941892793883785599 ~1996
1941928793883857599 ~1996
1941934793883869599 ~1996
1941988433883976879 ~1996
1941993713883987439 ~1996
194199781116519868710 ~1997
1942008233884016479 ~1996
Exponent Prime Factor Digits Year
1942085691048726272711 ~1999
1942119713884239439 ~1996
194218933116531359910 ~1997
194221691349599043910 ~1998
1942227113884454239 ~1996
1942279913884559839 ~1996
1942285793884571599 ~1996
1942287113884574239 ~1996
1942370033884740079 ~1996
1942427033884854079 ~1996
1942547993885095999 ~1996
1942573313885146639 ~1996
1942594193885188399 ~1996
194261477116556886310 ~1997
1942616633885233279 ~1996
1942655633885311279 ~1996
194267987155414389710 ~1997
1942766393885532799 ~1996
1942822793885645599 ~1996
194282533116569519910 ~1997
194283941116570364710 ~1997
1942867913885735839 ~1996
194297633116578579910 ~1997
1943011793886023599 ~1996
1943023433886046879 ~1996
Home
4.843.404 digits
e-mail
25-06-08