Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2136374994272749999 ~1996
2136450234272900479 ~1996
213651797128191078310 ~1997
213656297170925037710 ~1998
2136578634273157279 ~1996
213666779384600202310 ~1998
2136740994273481999 ~1996
2136763434273526879 ~1996
2136822234273644479 ~1996
213682883512838919310 ~1999
2136853314273706639 ~1996
213689519170951615310 ~1998
2136964194273928399 ~1996
213698383213698383110 ~1998
2136991194273982399 ~1996
213700997128220598310 ~1997
2137024314274048639 ~1996
2137032714274065439 ~1996
2137202634274405279 ~1996
2137241394274482799 ~1996
213731927384717468710 ~1998
2137376034274752079 ~1996
2137428834274857679 ~1996
2137483194274966399 ~1996
213753341128252004710 ~1997
Exponent Prime Factor Digits Year
2137605234275210479 ~1996
2137726314275452639 ~1996
2137739994275479999 ~1996
213777371384799267910 ~1998
2137830714275661439 ~1996
2137927914275855839 ~1996
2137978194275956399 ~1996
213801557128280934310 ~1997
2138047434276094879 ~1996
2138076834276153679 ~1996
2138099034276198079 ~1996
213814001128288400710 ~1997
2138220834276441679 ~1996
2138423291154748576711 ~2000
213851549171081239310 ~1998
2138609634277219279 ~1996
2138696994277393999 ~1996
2138701794277403599 ~1996
2138754714277509439 ~1996
213876997513304792910 ~1999
213881881128329128710 ~1997
213881951384987511910 ~1998
2139016314278032639 ~1996
2139051834278103679 ~1996
2139063234278126479 ~1996
Exponent Prime Factor Digits Year
213910331171128264910 ~1998
2139190914278381839 ~1996
213921733128353039910 ~1997
213927781984067792710 ~1999
213938849171151079310 ~1998
213943277171154621710 ~1998
213943633855774532110 ~1999
213944897299522855910 ~1998
2139533034279066079 ~1996
2139543714279087439 ~1996
2139544914279089839 ~1996
2139545994279091999 ~1996
2139549594279099199 ~1996
2139626815135104344111 ~2001
2139667194279334399 ~1996
2139689394279378799 ~1996
2139699114279398239 ~1996
213979421128387652710 ~1997
2139820314279640639 ~1996
213983381128390028710 ~1997
2140026114280052239 ~1996
214005433128403259910 ~1997
2140176594280353199 ~1996
2140265514280531039 ~1996
214031897642095691110 ~1999
Exponent Prime Factor Digits Year
2140345314280690639 ~1996
214034741128420844710 ~1997
2140397994280795999 ~1996
214045109171236087310 ~1998
214045879214045879110 ~1998
2140519914281039839 ~1996
2140569594281139199 ~1996
2140576434281152879 ~1996
214059011171247208910 ~1998
2140618194281236399 ~1996
2140639194281278399 ~1996
2140668714281337439 ~1996
2140696434281392879 ~1996
214074293128444575910 ~1997
214074503899112912710 ~1999
2140806234281612479 ~1996
2140866114281732239 ~1996
214091179385364122310 ~1998
214093277128455966310 ~1997
2140965834281931679 ~1996
2140989714281979439 ~1996
214099541128459724710 ~1997
2141076834282153679 ~1996
2141144034282288079 ~1996
2141169714282339439 ~1996
Home
4.739.325 digits
e-mail
25-04-20