Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
519780479103956095910 ~1999
519781019103956203910 ~1999
519782897311869738310 ~2000
519787991103957598310 ~1999
519805921311883552710 ~2000
519823373311894023910 ~2000
519882371103976474310 ~1999
519884231103976846310 ~1999
519888899103977779910 ~1999
519900263103980052710 ~1999
519927563103985512710 ~1999
519941759103988351910 ~1999
519943211103988642310 ~1999
519950939103990187910 ~1999
519954791103990958310 ~1999
519972179103994435910 ~1999
519987659103997531910 ~1999
519994949415995959310 ~2001
519996517311997910310 ~2000
520026119104005223910 ~1999
520030139104006027910 ~1999
520040303104008060710 ~1999
520054919104010983910 ~1999
520093481312056088710 ~2000
520095431104019086310 ~1999
Exponent Prime Factor Digits Year
520097111104019422310 ~1999
520169651104033930310 ~1999
520210403104042080710 ~1999
520223999936403198310 ~2001
520250527520250527110 ~2001
520262051104052410310 ~1999
520262051936471691910
520263251104052650310 ~1999
520276271104055254310 ~1999
520276811104055362310 ~1999
520284203104056840710 ~1999
520285523104057104710 ~1999
520315739104063147910 ~1999
520320323104064064710 ~1999
520334939104066987910 ~1999
520373963104074792710 ~1999
520383239104076647910 ~1999
5203943411561183023111 ~2002
520405243520405243110 ~2001
520422839104084567910 ~1999
520423097416338477710 ~2001
520448849416359079310 ~2001
520454491520454491110 ~2001
520468253312280951910 ~2000
520483141312289884710 ~2000
Exponent Prime Factor Digits Year
520483979104096795910 ~1999
520484117312290470310 ~2000
520485323104097064710 ~1999
520491859520491859110 ~2001
520501417312300850310 ~2000
520511639416409311310 ~2001
520535161312321096710 ~2000
520543619104108723910 ~1999
520568501416454800910 ~2001
520589099104117819910 ~1999
520600207832960331310 ~2001
520606259104121251910 ~1999
520657799104131559910 ~1999
520692863104138572710 ~1999
520693093312415855910 ~2000
520699499104139899910 ~1999
520703399104140679910 ~1999
520706171104141234310 ~1999
520713283520713283110 ~2001
520717357312430414310 ~2000
520729747520729747110 ~2001
520745399104149079910 ~1999
520783223104156644710 ~1999
520786943104157388710 ~1999
520792043104158408710 ~1999
Exponent Prime Factor Digits Year
520799231104159846310 ~1999
520829483104165896710 ~1999
520830743104166148710 ~1999
520835881833337409710 ~2001
520849151104169830310 ~1999
52085755113438124815912 ~2004
520857853312514711910 ~2000
520881743104176348710 ~1999
520882931104176586310 ~1999
520887481312532488710 ~2000
520888079104177615910 ~1999
520915823104183164710 ~1999
520919891104183978310 ~1999
520934591104186918310 ~1999
520952483104190496710 ~1999
520966679104193335910 ~1999
520994759104198951910 ~1999
521006411104201282310 ~1999
52101161910941243999112 ~2004
521018111104203622310 ~1999
521022311104204462310 ~1999
521033917312620350310 ~2000
521039699104207939910 ~1999
521072347521072347110 ~2001
521076541312645924710 ~2000
Home
4.724.182 digits
e-mail
25-04-13