Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
604032119120806423910 ~2000
604032959120806591910 ~2000
604041259604041259110 ~2001
604050847604050847110 ~2001
604052357362431414310 ~2001
604074491120814898310 ~2000
604082243120816448710 ~2000
604087751120817550310 ~2000
604092371120818474310 ~2000
604100111120820022310 ~2000
6041304191087434754311 ~2002
6041436531449944767311 ~2002
604147319120829463910 ~2000
604215193966744308910 ~2002
604234331120846866310 ~2000
604246619483397295310 ~2001
604252373362551423910 ~2001
604253459120850691910 ~2000
604256027483404821710 ~2001
604267561362560536710 ~2001
6042725898580670763911 ~2004
604277363120855472710 ~2000
604301891120860378310 ~2000
604302749483442199310 ~2001
604318679120863735910 ~2000
Exponent Prime Factor Digits Year
604327463120865492710 ~2000
604329959120865991910 ~2000
604365431120873086310 ~2000
6043818292901032779311 ~2003
604411601483529280910 ~2001
604419743120883948710 ~2000
604438319120887663910 ~2000
604442243120888448710 ~2000
604443263120888652710 ~2000
604448051120889610310 ~2000
604456091483564872910 ~2001
604489241362693544710 ~2001
604517777483614221710 ~2001
604522571120904514310 ~2000
604559003120911800710 ~2000
604588333362752999910 ~2001
604591943120918388710 ~2000
604596893362758135910 ~2001
604600319120920063910 ~2000
604627883120925576710 ~2000
604639151120927830310 ~2000
604647581362788548710 ~2001
604648991120929798310 ~2000
604650311120930062310 ~2000
604709291120941858310 ~2000
Exponent Prime Factor Digits Year
604739171120947834310 ~2000
604743617362846170310 ~2001
604745231120949046310 ~2000
604762919120952583910 ~2000
604765829483812663310 ~2001
604783031120956606310 ~2000
604803403967685444910 ~2002
604838051120967610310 ~2000
604845383120969076710 ~2000
604859603120971920710 ~2000
604875179120975035910 ~2000
604899923120979984710 ~2000
604909139120981827910 ~2000
604984273362990563910 ~2001
6049941076896932819911 ~2004
604995563120999112710 ~2000
605004623121000924710 ~2000
605057279121011455910 ~2000
605073263121014652710 ~2000
605079203121015840710 ~2000
605109299121021859910 ~2000
605119469847167256710 ~2002
605141363121028272710 ~2000
605164139121032827910 ~2000
605177231121035446310 ~2000
Exponent Prime Factor Digits Year
605197871121039574310 ~2000
605202001363121200710 ~2001
605207353363124411910 ~2001
605216219121043243910 ~2000
605250199605250199110 ~2001
605251151121050230310 ~2000
605252423121050484710 ~2000
605271143121054228710 ~2000
6052963091331651879911 ~2002
605303291121060658310 ~2000
605329163121065832710 ~2000
605360051121072010310 ~2000
605367131121073426310 ~2000
605384159121076831910 ~2000
605417441363250464710 ~2001
605425559121085111910 ~2000
605437159605437159110 ~2001
605444951121088990310 ~2000
605467619121093523910 ~2000
605479387968767019310 ~2002
605494199121098839910 ~2000
605547023121109404710 ~2000
605550779121110155910 ~2000
605592973363355783910 ~2001
605595253363357151910 ~2001
Home
4.724.182 digits
e-mail
25-04-13