Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
521684651104336930310 ~1999
521692817313015690310 ~2000
521710499104342099910 ~1999
521754251104350850310 ~1999
521776421313065852710 ~2000
521790491104358098310 ~1999
521796313313077787910 ~2000
521798471417438776910 ~2001
521806511104361302310 ~1999
521806919104361383910 ~1999
521815691104363138310 ~1999
521817143104363428710 ~1999
521819159104363831910 ~1999
521831777313099066310 ~2000
521836099521836099110 ~2001
5218634992504944795311 ~2002
521872097313123258310 ~2000
521873813313124287910 ~2000
521890559104378111910 ~1999
521891663104378332710 ~1999
521902943104380588710 ~1999
521955971104391194310 ~1999
521957603104391520710 ~1999
521977331104395466310 ~1999
521983993313190395910 ~2000
Exponent Prime Factor Digits Year
5219992131670397481711 ~2002
522002057313201234310 ~2000
522024263104404852710 ~1999
522024551104404910310 ~1999
522031151104406230310 ~1999
5220378972401374326311 ~2002
5220463672923459655311 ~2003
522046751104409350310 ~1999
522051371104410274310 ~1999
5220548931252931743311 ~2002
522055997730878395910 ~2001
522067523104413504710 ~1999
522067691104413538310 ~1999
522075553313245331910 ~2000
522078131104415626310 ~1999
522094019104418803910 ~1999
522110423104422084710 ~1999
522140219104428043910 ~1999
522145163104429032710 ~1999
522157763104431552710 ~1999
522157859104431571910 ~1999
522159023104431804710 ~1999
522174479104434895910 ~1999
522181739104436347910 ~1999
522185381313311228710 ~2000
Exponent Prime Factor Digits Year
522195071104439014310 ~1999
522195419104439083910 ~1999
522197051104439410310 ~1999
522200117313320070310 ~2000
522217481313330488710 ~2000
522292997417834397710 ~2001
522296651417837320910 ~2001
522299243104459848710 ~1999
522321083104464216710 ~1999
522335903104467180710 ~1999
522336301313401780710 ~2000
522388837313433302310 ~2000
5224035891253768613711 ~2002
522406799104481359910 ~1999
5224127631358273183911 ~2002
522418703104483740710 ~1999
522425951104485190310 ~1999
522453539104490707910 ~1999
522476219104495243910 ~1999
522482381417985904910 ~2001
5225004712508002260911 ~2002
522520403104504080710 ~1999
522524399104504879910 ~1999
522533243104506648710 ~1999
522533279104506655910 ~1999
Exponent Prime Factor Digits Year
5225368572090147428111 ~2002
522548639104509727910 ~1999
522555023104511004710 ~1999
522558671104511734310 ~1999
522561131104512226310 ~1999
522574919104514983910 ~1999
522588263104517652710 ~1999
522589811104517962310 ~1999
5225961891985865518311 ~2002
522653951104530790310 ~1999
522682679104536535910 ~1999
522695819104539163910 ~1999
522711803104542360710 ~1999
5227148473449917990311 ~2003
522715559104543111910 ~1999
522776531104555306310 ~1999
522805373313683223910 ~2000
52282825935134059004912 ~2005
522832259104566451910 ~1999
522836827836538923310 ~2001
522838993313703395910 ~2000
522841523104568304710 ~1999
522867019522867019110 ~2001
522868987522868987110 ~2001
522883919104576783910 ~1999
Home
4.843.404 digits
e-mail
25-06-08