Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
607339283121467856710 ~2000
607346783121469356710 ~2000
607349033850288646310 ~2002
607354283121470856710 ~2000
607372697485898157710 ~2001
607385059607385059110 ~2001
607390643121478128710 ~2000
6074082671093334880711 ~2002
607421123121484224710 ~2000
607430699121486139910 ~2000
6074316972915672145711 ~2003
607451891121490378310 ~2000
607477919121495583910 ~2000
607488383121497676710 ~2000
607510987972017579310 ~2002
607519013364511407910 ~2001
607535843121507168710 ~2000
607549499121509899910 ~2000
607553399121510679910 ~2000
6075629511093613311911 ~2002
607583279121516655910 ~2000
607597079121519415910 ~2000
6076056717412789186311 ~2004
607610771121522154310 ~2000
607613467607613467110 ~2001
Exponent Prime Factor Digits Year
607625831121525166310 ~2000
607639559486111647310 ~2001
607656359121531271910 ~2000
607667999121533599910 ~2000
607670111121534022310 ~2000
607671731121534346310 ~2000
607689143121537828710 ~2000
607698011121539602310 ~2000
607716211607716211110 ~2001
607746803121549360710 ~2000
607750163121550032710 ~2000
607764961364658976710 ~2001
607769423121553884710 ~2000
607775111121555022310 ~2000
6077879111094018239911 ~2002
607790303121558060710 ~2000
607804811121560962310 ~2000
607806191121561238310 ~2000
607810717364686430310 ~2001
607821133364692679910 ~2001
607850531121570106310 ~2000
607876739121575347910 ~2000
607878083121575616710 ~2000
607886231486308984910 ~2001
607889063121577812710 ~2000
Exponent Prime Factor Digits Year
607893959121578791910 ~2000
607895159121579031910 ~2000
6078958791458950109711 ~2002
607902221364741332710 ~2001
607907759121581551910 ~2000
607912757364747654310 ~2001
607961533364776919910 ~2001
607964713364778827910 ~2001
607969919121593983910 ~2000
607996463121599292710 ~2000
608010479121602095910 ~2000
608030303121606060710 ~2000
608037299121607459910 ~2000
608043701364826220710 ~2001
608047931121609586310 ~2000
608053031121610606310 ~2000
608056453364833871910 ~2001
608058041364834824710 ~2001
608061539121612307910 ~2000
608098223121619644710 ~2000
608100239486480191310 ~2001
608100359121620071910 ~2000
608111723121622344710 ~2000
6081170531824351159111 ~2002
608122643121624528710 ~2000
Exponent Prime Factor Digits Year
608127431121625486310 ~2000
608132879121626575910 ~2000
608162491608162491110 ~2001
608167223121633444710 ~2000
6081899291338017843911 ~2002
608225699121645139910 ~2000
60823168311678048313712 ~2004
608232659121646531910 ~2000
608238479121647695910 ~2000
608239211121647842310 ~2000
608242757364945654310 ~2001
608244977486595981710 ~2001
608256839121651367910 ~2000
608267483121653496710 ~2000
608274581364964748710 ~2001
608292439608292439110 ~2001
608295899121659179910 ~2000
608304143121660828710 ~2000
608305583121661116710 ~2000
608316419121663283910 ~2000
608322277364993366310 ~2001
608338103121667620710 ~2000
608343839121668767910 ~2000
608355983121671196710 ~2000
608356799121671359910 ~2000
Home
4.724.182 digits
e-mail
25-04-13