Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
569010971113802194310 ~1999
569015231113803046310 ~1999
569015519113803103910 ~1999
5690176211251838766311 ~2002
569018363113803672710 ~1999
5690305374552244296111 ~2003
569043971113808794310 ~1999
569059811113811962310 ~1999
569102951113820590310 ~1999
569137643113827528710 ~1999
569142323113828464710 ~1999
569144491910631185710 ~2002
569167283113833456710 ~1999
569181059113836211910 ~1999
569223659113844731910 ~1999
569231219113846243910 ~1999
569242031113848406310 ~1999
569263091113852618310 ~1999
569274137341564482310 ~2001
569308931113861786310 ~1999
569309003113861800710 ~1999
569319599113863919910 ~1999
569324699113864939910 ~1999
569356457341613874310 ~2001
569367203113873440710 ~1999
Exponent Prime Factor Digits Year
569381639113876327910 ~1999
569382179113876435910 ~1999
569412383113882476710 ~1999
569413703113882740710 ~1999
569415383113883076710 ~1999
569416031113883206310 ~1999
569419237341651542310 ~2001
569427851113885570310 ~1999
5694279131366626991311 ~2002
569437523113887504710 ~1999
569440439113888087910 ~1999
569448911455559128910 ~2001
569472899113894579910 ~1999
569476223113895244710 ~1999
569489939113897987910 ~1999
569501711113900342310 ~1999
569524523113904904710 ~1999
569536727455629381710 ~2001
569582693797415770310 ~2001
569586869455669495310 ~2001
569620979113924195910 ~1999
569625011113925002310 ~1999
569637443113927488710 ~1999
569645039113929007910 ~1999
569646373341787823910 ~2001
Exponent Prime Factor Digits Year
569660999113932199910 ~1999
569662141341797284710 ~2001
569663177797528447910 ~2001
569677441341806464710 ~2001
569691719455753375310 ~2001
569711951113942390310 ~1999
569722739113944547910 ~1999
569723279113944655910 ~1999
569751137797651591910 ~2001
569755139113951027910 ~1999
569767619113953523910 ~1999
569775203113955040710 ~1999
569781743113956348710 ~1999
5697872271025617008711 ~2002
569826599113965319910 ~1999
569834351113966870310 ~1999
569856491113971298310 ~1999
569885903113977180710 ~1999
569913131113982626310 ~1999
569923117911876987310 ~2002
569938331113987666310 ~1999
569970083113994016710 ~1999
569970491113994098310 ~1999
569973577341984146310 ~2001
569982437341989462310 ~2001
Exponent Prime Factor Digits Year
569983283113996656710 ~1999
570014363114002872710 ~1999
570018797342011278310 ~2001
570036683114007336710 ~1999
570044837798062771910 ~2001
5700553137638741194311 ~2004
570066379570066379110 ~2001
5701011671026182100711 ~2002
570107183114021436710 ~1999
570122699114024539910 ~1999
570154919114030983910 ~1999
570166693912266708910 ~2002
570182243114036448710 ~1999
570191351114038270310 ~1999
570206831114041366310 ~1999
570227771114045554310 ~1999
570256223114051244710 ~1999
570260819114052163910 ~1999
570277397798388355910 ~2001
570280811114056162310 ~1999
570295619114059123910 ~1999
570326303114065260710 ~1999
570365039114073007910 ~1999
570381419114076283910 ~1999
570394403114078880710 ~1999
Home
4.933.056 digits
e-mail
25-07-20