Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
911299877546779926310 ~2002
911313839729051071310 ~2002
911333447729066757710 ~2002
911356331182271266310 ~2001
911364791182272958310 ~2001
911374283182274856710 ~2001
911386717546832030310 ~2002
911387819182277563910 ~2001
911395643182279128710 ~2001
911419823182283964710 ~2001
911421239182284247910 ~2001
9114254471640565804711 ~2003
911431229729144983310 ~2002
911486783182297356710 ~2001
911489291182297858310 ~2001
911546543182309308710 ~2001
911547863182309572710 ~2001
911558339182311667910 ~2001
911564399182312879910 ~2001
911568797546941278310 ~2002
9116106494375731115311 ~2004
911645159182329031910 ~2001
911676071182335214310 ~2001
911729939182345987910 ~2001
911734357547040614310 ~2002
Exponent Prime Factor Digits Year
911737361729389888910 ~2002
9117646871458823499311 ~2003
911768003182353600710 ~2001
911772419182354483910 ~2001
911784551182356910310 ~2001
911796419729437135310 ~2002
9118194316565099903311 ~2005
911865359182373071910 ~2001
911895119182379023910 ~2001
91190324910942838988112 ~2005
911923319182384663910 ~2001
911931947729545557710 ~2002
9120003372188800808911 ~2004
912019571182403914310 ~2001
912054179182410835910 ~2001
912100571182420114310 ~2001
912103259182420651910 ~2001
912106919729685535310 ~2002
912113099182422619910 ~2001
912121883182424376710 ~2001
912160943182432188710 ~2001
912180539182436107910 ~2001
912185177729748141710 ~2002
912267371182453474310 ~2001
912307919182461583910 ~2001
Exponent Prime Factor Digits Year
912323999182464799910 ~2001
912342071182468414310 ~2001
912373019182474603910 ~2001
912379733547427839910 ~2002
912398441729918752910 ~2002
912399263182479852710 ~2001
912422111182484422310 ~2001
9124338172189841160911 ~2004
912447479182489495910 ~2001
912449053547469431910 ~2002
9124509611459921537711 ~2003
912464219182492843910 ~2001
9124822972737446891111 ~2004
912487831912487831110 ~2003
912490151182498030310 ~2001
912497161547498296710 ~2002
912541919182508383910 ~2001
912591371182518274310 ~2001
912603347730082677710 ~2002
912608771182521754310 ~2001
912613997730091197710 ~2002
912622103182524420710 ~2001
912658553547595131910 ~2002
912678731182535746310 ~2001
912690673547614403910 ~2002
Exponent Prime Factor Digits Year
912698291182539658310 ~2001
912727171912727171110 ~2003
912734051182546810310 ~2001
9127408131277837138311 ~2003
912771059182554211910 ~2001
9128209631460513540911 ~2003
912839183182567836710 ~2001
9128610911643149963911 ~2003
912863879182572775910 ~2001
912866351182573270310 ~2001
912883859182576771910 ~2001
912885811912885811110 ~2003
912926893547756135910 ~2002
912927563182585512710 ~2001
912937871182587574310 ~2001
912950963182590192710 ~2001
912956939182591387910 ~2001
912985211182597042310 ~2001
913017851182603570310 ~2001
913034411182606882310 ~2001
913054799182610959910 ~2001
913079423182615884710 ~2001
913091827913091827110 ~2003
913176353547905811910 ~2002
9132213191643798374311 ~2003
Home
4.724.182 digits
e-mail
25-04-13