Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1024971061614982636710 ~2003
1024973849819979079310 ~2003
1025012441820009952910 ~2003
1025077979205015595910 ~2001
10250794934715365667911 ~2005
1025086019205017203910 ~2001
1025091191205018238310 ~2001
1025118239205023647910 ~2001
1025119349820095479310 ~2003
1025125511205025102310 ~2001
10251600911845288163911 ~2004
1025163541615098124710 ~2003
1025164223205032844710 ~2001
10251745931640279348911 ~2004
1025205983205041196710 ~2001
1025211641615126984710 ~2003
1025241521615144912710 ~2003
10252682274921287489711 ~2005
1025304517615182710310 ~2003
1025314211205062842310 ~2001
1025394371205078874310 ~2001
1025448311205089662310 ~2001
10254951533076485459111 ~2004
1025498819205099763910 ~2001
1025507531205101506310 ~2001
Exponent Prime Factor Digits Year
1025512991205102598310 ~2001
1025522219205104443910 ~2001
1025601371205120274310 ~2001
1025620679205124135910 ~2001
102565777112513024806312 ~2006
1025680681615408408710 ~2003
1025713121615427872710 ~2003
1025715401615429240710 ~2003
10257217037385196261711 ~2005
1025819759205163951910 ~2001
1025820563205164112710 ~2001
1025854691205170938310 ~2001
10258576912667229996711 ~2004
1025895203205179040710 ~2001
1025947381615568428710 ~2003
1025987603205197520710 ~2001
1025994503205198900710 ~2001
1026011377615606826310 ~2003
1026040391205208078310 ~2001
1026089483205217896710 ~2001
1026106181615663708710 ~2003
1026123803205224760710 ~2001
1026176699205235339910 ~2001
10261973872668113206311 ~2004
1026254617615752770310 ~2003
Exponent Prime Factor Digits Year
1026316139205263227910 ~2001
10263173111642107697711 ~2004
1026338813615803287910 ~2003
1026338843205267768710 ~2001
1026348419205269683910 ~2001
1026352091205270418310 ~2001
1026395963205279192710 ~2001
10264031111642244977711 ~2004
1026408479205281695910 ~2001
1026419363205283872710 ~2001
1026446339205289267910 ~2001
1026539411205307882310 ~2001
1026544919205308983910 ~2001
1026563159205312631910 ~2001
1026565103205313020710 ~2001
1026588011205317602310 ~2001
1026610301821288240910 ~2003
1026639479205327895910 ~2001
10266447838213158264111 ~2005
1026669851205333970310 ~2001
1026716231205343246310 ~2001
1026719051205343810310 ~2001
1026729971205345994310 ~2001
1026731171205346234310 ~2001
1026748357616049014310 ~2003
Exponent Prime Factor Digits Year
1026751421616050852710 ~2003
10267715632464251751311 ~2004
1026784571205356914310 ~2001
1026791819205358363910 ~2001
1026794123205358824710 ~2001
10268026492464326357711 ~2004
1026812201821449760910 ~2003
1026906911205381382310 ~2001
1026921191205384238310 ~2001
1026949139205389827910 ~2001
1027036163205407232710 ~2001
10270458791027045879111 ~2003
1027081241616248744710 ~2003
1027098119205419623910 ~2001
1027126151205425230310 ~2001
1027133039205426607910 ~2001
1027156199205431239910 ~2001
1027167923205433584710 ~2001
1027183273616309963910 ~2003
1027198619205439723910 ~2001
1027308479205461695910 ~2001
10273291031027329103111 ~2003
1027342031205468406310 ~2001
1027360283205472056710 ~2001
10273640471027364047111 ~2003
Home
4.724.182 digits
e-mail
25-04-13