Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1027409639205481927910 ~2001
1027411717616447030310 ~2003
1027426313616455787910 ~2003
1027426357616455814310 ~2003
1027479503205495900710 ~2001
1027502303205500460710 ~2001
1027508231205501646310 ~2001
1027511711205502342310 ~2001
1027516859205503371910 ~2001
10275501319042441152911 ~2005
1027568819205513763910 ~2001
1027603919205520783910 ~2001
1027616591205523318310 ~2001
1027636079205527215910 ~2001
1027636523205527304710 ~2001
1027697501822158000910 ~2003
1027713983205542796710 ~2001
1027715237616629142310 ~2003
1027743131205548626310 ~2001
1027752419205550483910 ~2001
1027804559205560911910 ~2001
1027808711205561742310 ~2001
1027830071205566014310 ~2001
1027846817822277453710 ~2003
1027863779205572755910 ~2001
Exponent Prime Factor Digits Year
1027880663205576132710 ~2001
1027888259205577651910 ~2001
1027892363205578472710 ~2001
1027900799205580159910 ~2001
1027913339205582667910 ~2001
1027949933616769959910 ~2003
1027953851205590770310 ~2001
1027969763205593952710 ~2001
10279730992467135437711 ~2004
1027976039205595207910 ~2001
1027988639205597727910 ~2001
1027995359205599071910 ~2001
1027995443205599088710 ~2001
1028108041616864824710 ~2003
1028109431205621886310 ~2001
1028135819205627163910 ~2001
1028137793616882675910 ~2003
1028141531205628306310 ~2001
1028142911205628582310 ~2001
1028254349822603479310 ~2003
1028295179205659035910 ~2001
1028375773617025463910 ~2003
102840053913163526899312 ~2006
1028435113617061067910 ~2003
1028494501617096700710 ~2003
Exponent Prime Factor Digits Year
1028531183205706236710 ~2001
1028540963205708192710 ~2001
1028548991205709798310 ~2001
1028621003205724200710 ~2001
10286739771440143567911 ~2003
1028723603205744720710 ~2001
10287260037612572422311 ~2005
1028730161822984128910 ~2003
1028745143205749028710 ~2001
1028778659205755731910 ~2001
1028805539205761107910 ~2001
1028837423205767484710 ~2001
1028895299205779059910 ~2001
1028913923205782784710 ~2001
10289353072675231798311 ~2004
1028952779205790555910 ~2001
1028971451205794290310 ~2001
1028978651205795730310 ~2001
1029057611205811522310 ~2001
1029064199205812839910 ~2001
1029103841617462304710 ~2003
1029126551205825310310 ~2001
10291293711852432867911 ~2004
1029133837617480302310 ~2003
1029181463205836292710 ~2001
Exponent Prime Factor Digits Year
1029373421617624052710 ~2003
1029398597823518877710 ~2003
1029447059823557647310 ~2003
1029455243205891048710 ~2001
10294764071029476407111 ~2003
10295325494118130196111 ~2005
1029535739205907147910 ~2001
10295565131647290420911 ~2004
1029564383205912876710 ~2001
1029603301617761980710 ~2003
1029710677617826406310 ~2003
1029783563205956712710 ~2001
1029804983205960996710 ~2001
1029816923205963384710 ~2001
1029856781823885424910 ~2003
1029868093617920855910 ~2003
1029907751205981550310 ~2001
1029919931205983986310 ~2001
10299315797415507368911 ~2005
1029941579205988315910 ~2001
1029988343205997668710 ~2001
1029993037617995822310 ~2003
1030008131206001626310 ~2001
1030099391206019878310 ~2001
1030100843206020168710 ~2001
Home
4.724.182 digits
e-mail
25-04-13