Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1051699151210339830310 ~2001
1051701263210340252710 ~2001
1051738931210347786310 ~2001
1051784759210356951910 ~2001
1051785401631071240710 ~2003
1051795883210359176710 ~2001
1051806839210361367910 ~2001
1051816873631090123910 ~2003
1051835087841468069710 ~2003
1051837883210367576710 ~2001
1051852079210370415910 ~2001
10518942193576440344711 ~2004
1051911743210382348710 ~2001
1051917131210383426310 ~2001
1051934113631160467910 ~2003
1051964861841571888910 ~2003
1051966199210393239910 ~2001
1051978667841582933710 ~2003
10519801031051980103111 ~2003
1051993223210398644710 ~2001
1052011393631206835910 ~2003
1052163023210432604710 ~2001
1052189111210437822310 ~2001
1052198639210439727910 ~2001
1052226971210445394310 ~2001
Exponent Prime Factor Digits Year
10522390375050747377711 ~2005
1052249117631349470310 ~2003
1052258183210451636710 ~2001
1052261123210452224710 ~2001
1052277311210455462310 ~2001
1052353139841882511310 ~2003
1052369189841895351310 ~2003
1052369497631421698310 ~2003
1052370503210474100710 ~2001
10523752991894275538311 ~2004
1052408519841926815310 ~2003
10524349211683895873711 ~2004
1052450051210490010310 ~2001
1052499557631499734310 ~2003
1052559251210511850310 ~2001
1052610623210522124710 ~2001
1052618377631571026310 ~2003
1052641571210528314310 ~2001
10526459832526350359311 ~2004
1052681639210536327910 ~2001
1052682461631609476710 ~2003
1052781419210556283910 ~2001
1052783801631670280710 ~2003
10527868511895016331911 ~2004
1052804471210560894310 ~2001
Exponent Prime Factor Digits Year
1052862059210572411910 ~2001
1052878163210575632710 ~2001
1052918423210583684710 ~2001
1052931419210586283910 ~2001
1052954879210590975910 ~2001
1053015059210603011910 ~2001
1053018977631811386310 ~2003
1053035339210607067910 ~2001
1053035939210607187910 ~2001
1053050279210610055910 ~2001
1053133397842506717710 ~2003
1053135311210627062310 ~2001
105314299977721953326312 ~2008
1053161579210632315910 ~2001
1053172229842537783310 ~2003
1053172979210634595910 ~2001
1053183671210636734310 ~2001
10531923171474469243911 ~2004
1053196031210639206310 ~2001
1053206411210641282310 ~2001
10532064891474489084711 ~2004
1053217547842574037710 ~2003
1053253979210650795910 ~2001
1053256931210651386310 ~2001
1053310031210662006310 ~2001
Exponent Prime Factor Digits Year
1053357479210671495910 ~2001
1053357659210671531910 ~2001
1053361943210672388710 ~2001
1053373571210674714310 ~2001
1053396731210679346310 ~2001
1053409631210681926310 ~2001
1053424139210684827910 ~2001
1053428777632057266310 ~2003
1053433943210686788710 ~2001
1053440711210688142310 ~2001
1053469199210693839910 ~2001
1053525719210705143910 ~2001
10535536031685685764911 ~2004
10535731793371434172911 ~2004
1053633241632179944710 ~2003
10536692711053669271111 ~2003
1053676979210735395910 ~2001
1053682523210736504710 ~2001
1053740819210748163910 ~2001
1053759431210751886310 ~2001
1053780323210756064710 ~2001
1053860579210772115910 ~2001
1053886523210777304710 ~2001
1053905603210781120710 ~2001
1053969599210793919910 ~2001
Home
4.724.182 digits
e-mail
25-04-13