Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1165733531233146706310 ~2002
1165804043233160808710 ~2002
1165824397699494638310 ~2003
1165897871233179574310 ~2002
1165932503233186500710 ~2002
1165932959233186591910 ~2002
1165936283233187256710 ~2002
1165991159233198231910 ~2002
1166007971233201594310 ~2002
1166035631233207126310 ~2002
11660456773498137031111 ~2005
1166052731233210546310 ~2002
1166086643233217328710 ~2002
1166088023233217604710 ~2002
1166095979233219195910 ~2002
1166122703233224540710 ~2002
1166132483233226496710 ~2002
11661439192798745405711 ~2004
1166145611233229122310 ~2002
11661599276530495591311 ~2005
11661682511166168251111 ~2004
1166186243233237248710 ~2002
1166216591233243318310 ~2002
11662262231865961956911 ~2004
1166296177699777706310 ~2003
Exponent Prime Factor Digits Year
1166314043233262808710 ~2002
1166315723233263144710 ~2002
1166423831233284766310 ~2002
1166554139233310827910 ~2002
1166571491233314298310 ~2002
1166586593699951955910 ~2003
1166597339233319467910 ~2002
1166669723233333944710 ~2002
1166684159233336831910 ~2002
1166699711233339942310 ~2002
1166738801700043280710 ~2003
1166759519233351903910 ~2002
11668414931866946388911 ~2004
1166849531233369906310 ~2002
1166857943233371588710 ~2002
1166872633700123579910 ~2003
1166892263233378452710 ~2002
1166893883233378776710 ~2002
1166909423233381884710 ~2002
11669110998401759912911 ~2006
11669299131633701878311 ~2004
1166987411233397482310 ~2002
1167038711233407742310 ~2002
1167048059233409611910 ~2002
1167060539233412107910 ~2002
Exponent Prime Factor Digits Year
1167095711233419142310 ~2002
1167129863233425972710 ~2002
1167173159233434631910 ~2002
1167177131233435426310 ~2002
1167226199233445239910 ~2002
1167226331233445266310 ~2002
1167282023233456404710 ~2002
1167286697700372018310 ~2003
116732011714007841404112 ~2006
1167322991233464598310 ~2002
1167347123233469424710 ~2002
1167347999233469599910 ~2002
1167390491233478098310 ~2002
1167395483233479096710 ~2002
1167408743233481748710 ~2002
11674354272801845024911 ~2004
1167463679233492735910 ~2002
1167468581700481148710 ~2003
1167492071233498414310 ~2002
1167498803233499760710 ~2002
1167518531233503706310 ~2002
1167543877700526326310 ~2003
1167571487934057189710 ~2003
1167577871233515574310 ~2002
1167625213700575127910 ~2003
Exponent Prime Factor Digits Year
1167642323233528464710 ~2002
1167693539233538707910 ~2002
116769810110275743288912 ~2006
1167726743233545348710 ~2002
1167728099233545619910 ~2002
11677303133503190939111 ~2005
1167744953700646971910 ~2003
1167814379934251503310 ~2003
1167836459233567291910 ~2002
1167952403233590480710 ~2002
1167971137700782682310 ~2003
1167981911233596382310 ~2002
1168015811233603162310 ~2002
1168026971233605394310 ~2002
1168030991233606198310 ~2002
1168042703233608540710 ~2002
1168170599233634119910 ~2002
1168204463233640892710 ~2002
1168207451233641490310 ~2002
1168207679233641535910 ~2002
1168240343233648068710 ~2002
1168305371233661074310 ~2002
1168373797701024278310 ~2003
1168423163233684632710 ~2002
1168449143233689828710 ~2002
Home
4.724.182 digits
e-mail
25-04-13