Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
11341147195670573595111 ~2005
1134126443226825288710 ~2002
1134145703226829140710 ~2002
1134198881907359104910 ~2003
1134312983226862596710 ~2002
1134323279226864655910 ~2002
1134342971226868594310 ~2002
1134353039226870607910 ~2002
11343648671814983787311 ~2004
1134434051226886810310 ~2002
1134464879226892975910 ~2002
1134516359226903271910 ~2002
1134516431226903286310 ~2002
1134571271226914254310 ~2002
1134574643226914928710 ~2002
1134636479226927295910 ~2002
1134668939226933787910 ~2002
1134706511226941302310 ~2002
1134714803226942960710 ~2002
1134729539226945907910 ~2002
11347312871815570059311 ~2004
11347430111134743011111 ~2003
1134752891226950578310 ~2002
1134775637680865382310 ~2003
1134825239226965047910 ~2002
Exponent Prime Factor Digits Year
113484848316568787851912 ~2006
1134850859226970171910 ~2002
1134858359226971671910 ~2002
1134876731226975346310 ~2002
1134888851226977770310 ~2002
11348999813404699943111 ~2005
1134909541680945724710 ~2003
11351112171589155703911 ~2004
1135134503227026900710 ~2002
1135204319227040863910 ~2002
1135220129908176103310 ~2003
1135287119227057423910 ~2002
1135361999227072399910 ~2002
1135382543227076508710 ~2002
11353858092724925941711 ~2004
1135392743227078548710 ~2002
1135410359227082071910 ~2002
1135422221681253332710 ~2003
1135456457908365165710 ~2003
1135462511227092502310 ~2002
1135483259227096651910 ~2002
1135534079227106815910 ~2002
11355605412498233190311 ~2004
1135573139227114627910 ~2002
11355762413406728723111 ~2005
Exponent Prime Factor Digits Year
1135591043227118208710 ~2002
1135600019227120003910 ~2002
1135601501681360900710 ~2003
1135601543227120308710 ~2002
11356317431135631743111 ~2003
1135649951227129990310 ~2002
1135698131227139626310 ~2002
1135727303227145460710 ~2002
11357516778858863080711 ~2006
1135771633681462979910 ~2003
1135773311227154662310 ~2002
1135778291227155658310 ~2002
1135796699227159339910 ~2002
1135798091227159618310 ~2002
1135827743227165548710 ~2002
1135828139227165627910 ~2002
1135871543227174308710 ~2002
1135878899227175779910 ~2002
1135920503227184100710 ~2002
1135976027908780821710 ~2003
1135978439227195687910 ~2002
11359803972726352952911 ~2004
1135995359227199071910 ~2002
11360448431136044843111 ~2003
1136072401681643440710 ~2003
Exponent Prime Factor Digits Year
1136073299227214659910 ~2002
1136074151227214830310 ~2002
11360924231136092423111 ~2003
1136140151227228030310 ~2002
1136174579227234915910 ~2002
1136234849908987879310 ~2003
11362435433635979337711 ~2005
1136281403227256280710 ~2002
1136310179227262035910 ~2002
1136369797681821878310 ~2003
1136400143227280028710 ~2002
1136425859227285171910 ~2002
1136458139227291627910 ~2002
1136484851227296970310 ~2002
1136487623227297524710 ~2002
1136504651227300930310 ~2002
1136545357681927214310 ~2003
1136620211227324042310 ~2002
1136623861681974316710 ~2003
11366290931818606548911 ~2004
1136646083227329216710 ~2002
1136649323227329864710 ~2002
1136663123227332624710 ~2002
1136709863227341972710 ~2002
1136777051227355410310 ~2002
Home
4.843.404 digits
e-mail
25-06-08