Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
13634055173272173240911 ~2005
1363413301818047980710 ~2004
1363442963272688592710 ~2002
1363558991272711798310 ~2002
13636315515727252514311 ~2006
1363635323272727064710 ~2002
1363675331272735066310 ~2002
13636820693272836965711 ~2005
1363684319272736863910 ~2002
13637055711090964456911 ~2004
1363839359272767871910 ~2002
1363935239272787047910 ~2002
1363945871272789174310 ~2002
1364003171272800634310 ~2002
1364014321818408592710 ~2004
1364036351272807270310 ~2002
13640816391091265311311 ~2004
13641076392455393750311 ~2005
1364114123272822824710 ~2002
1364118911272823782310 ~2002
1364233751272846750310 ~2002
1364316671272863334310 ~2002
1364330183272866036710 ~2002
1364338883272867776710 ~2002
1364621099272924219910 ~2002
Exponent Prime Factor Digits Year
1364661983272932396710 ~2002
1364675159272935031910 ~2002
1364699183272939836710 ~2002
1364753363272950672710 ~2002
1364770453818862271910 ~2004
1364789183272957836710 ~2002
13647988192456637874311 ~2005
13648490392456728270311 ~2005
1364900759272980151910 ~2002
1364924843272984968710 ~2002
1364961863272992372710 ~2002
1364983331272996666310 ~2002
1364995799272999159910 ~2002
13650008511092000680911 ~2004
1365044783273008956710 ~2002
1365112439273022487910 ~2002
1365113903273022780710 ~2002
1365177491273035498310 ~2002
136519388310102434734312 ~2006
1365237119273047423910 ~2002
13653632712457653887911 ~2005
1365383963273076792710 ~2002
1365389303273077860710 ~2002
1365393059273078611910 ~2002
1365416543273083308710 ~2002
Exponent Prime Factor Digits Year
1365421523273084304710 ~2002
13654406175461762468111 ~2006
13654500411092360032911 ~2004
1365489299273097859910 ~2002
1365494653819296791910 ~2004
136551259113108920873712 ~2006
13655167873277240288911 ~2005
1365576011273115202310 ~2002
1365604931273120986310 ~2002
1365620279273124055910 ~2002
13656429471092514357711 ~2004
1365714577819428746310 ~2004
1365771503273154300710 ~2002
13657806311365780631111 ~2004
13658463591092677087311 ~2004
1365868139273173627910 ~2002
13659116271092729301711 ~2004
13660263411092821072911 ~2004
13660467833278512279311 ~2005
1366081919273216383910 ~2002
1366087259273217451910 ~2002
1366163651273232730310 ~2002
13662160911092972872911 ~2004
1366217423273243484710 ~2002
1366317983273263596710 ~2002
Exponent Prime Factor Digits Year
1366327463273265492710 ~2002
1366410263273282052710 ~2002
1366416503273283300710 ~2002
1366628999273325799910 ~2002
1366684919273336983910 ~2002
1366744343273348868710 ~2002
1366758383273351676710 ~2002
1366797557820078534310 ~2004
13668002931913520410311 ~2004
1366803131273360626310 ~2002
1366821503273364300710 ~2002
1366826663273365332710 ~2002
1366851683273370336710 ~2002
13668523071093481845711 ~2004
1366861571273372314310 ~2002
13669086711093526936911 ~2004
1366968221820180932710 ~2004
1366998779273399755910 ~2002
1367012723273402544710 ~2002
1367046311273409262310 ~2002
1367059619273411923910 ~2002
1367066243273413248710 ~2002
1367076611273415322310 ~2002
1367140451273428090310 ~2002
1367159831273431966310 ~2002
Home
4.724.182 digits
e-mail
25-04-13