Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1251509999250301999910 ~2002
12515165873003639808911 ~2005
1251599003250319800710 ~2002
1251641351250328270310 ~2002
12516495733003958975311 ~2005
12516761592253017086311 ~2004
1251725543250345108710 ~2002
12517334233004160215311 ~2005
1251735539250347107910 ~2002
1251782243250356448710 ~2002
1251862441751117464710 ~2003
1251920063250384012710 ~2002
1251964859250392971910 ~2002
1251979931250395986310 ~2002
1252000703250400140710 ~2002
1252046123250409224710 ~2002
1252060739250412147910 ~2002
12521427771001714221711 ~2004
1252194173751316503910 ~2003
1252194719250438943910 ~2002
1252211819250442363910 ~2002
1252250231250450046310 ~2002
1252280663250456132710 ~2002
1252309211250461842310 ~2002
1252346657751407994310 ~2003
Exponent Prime Factor Digits Year
1252358339250471667910 ~2002
1252417583250483516710 ~2002
1252425599250485119910 ~2002
1252467143250493428710 ~2002
1252470431250494086310 ~2002
1252480343250496068710 ~2002
1252483019250496603910 ~2002
1252486799250497359910 ~2002
1252551299250510259910 ~2002
1252587971250517594310 ~2002
1252668359250533671910 ~2002
12526895871002151669711 ~2004
12527504232004400676911 ~2004
1252762403250552480710 ~2002
12527794614760561951911 ~2005
12528331491002266519311 ~2004
1252835939250567187910 ~2002
12528864132004618260911 ~2004
1253006681751804008710 ~2003
12530789093759236727111 ~2005
1253100851250620170310 ~2002
1253110091250622018310 ~2002
1253122679250624535910 ~2002
1253215343250643068710 ~2002
1253290271250658054310 ~2002
Exponent Prime Factor Digits Year
1253306039250661207910 ~2002
1253343599250668719910 ~2002
1253353019250670603910 ~2002
1253418539250683707910 ~2002
1253422813752053687910 ~2003
1253470331250694066310 ~2002
1253480981752088588710 ~2003
1253515943250703188710 ~2002
12535281193008467485711 ~2005
1253545457752127274310 ~2003
1253548343250709668710 ~2002
1253566283250713256710 ~2002
12536622171755127103911 ~2004
1253735891250747178310 ~2002
1253737223250747444710 ~2002
1253740343250748068710 ~2002
12537512231253751223111 ~2004
1253771303250754260710 ~2002
12538194191253819419111 ~2004
1253826383250765276710 ~2002
1253880893752328535910 ~2003
12539051991003124159311 ~2004
1253933951250786790310 ~2002
12539616073009507856911 ~2005
1253981231250796246310 ~2002
Exponent Prime Factor Digits Year
1254003203250800640710 ~2002
1254009959250801991910 ~2002
1254018119250803623910 ~2002
1254081011250816202310 ~2002
1254098291250819658310 ~2002
1254122279250824455910 ~2002
1254159611250831922310 ~2002
1254216371250843274310 ~2002
1254369839250873967910 ~2002
12543810171003504813711 ~2004
12543903431254390343111 ~2004
1254483053752689831910 ~2003
12545055915018022364111 ~2005
12545130171003610413711 ~2004
1254515291250903058310 ~2002
1254518591250903718310 ~2002
1254523691250904738310 ~2002
12545388071254538807111 ~2004
1254567371250913474310 ~2002
1254631837752779102310 ~2003
1254638939250927787910 ~2002
1254665003250933000710 ~2002
1254699923250939984710 ~2002
1254700883250940176710 ~2002
1254725711250945142310 ~2002
Home
4.843.404 digits
e-mail
25-06-08