Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1139938139227987627910 ~2002
1140041633684024979910 ~2003
1140043979228008795910 ~2002
1140089543228017908710 ~2002
11401130992052203578311 ~2004
1140132443228026488710 ~2002
11401339371596187511911 ~2004
1140151091912120872910 ~2003
1140151141684090684710 ~2003
1140184379228036875910 ~2002
1140220657684132394310 ~2003
1140224831228044966310 ~2002
1140301273684180763910 ~2003
1140318983228063796710 ~2002
1140348791228069758310 ~2002
1140363743228072748710 ~2002
11403812112052686179911 ~2004
11404126213421237863111 ~2005
1140418319228083663910 ~2002
1140420191228084038310 ~2002
1140436499228087299910 ~2002
1140461213684276727910 ~2003
1140495203228099040710 ~2002
1140504971228100994310 ~2002
1140549251228109850310 ~2002
Exponent Prime Factor Digits Year
1140556559228111311910 ~2002
1140587099228117419910 ~2002
1140647537912518029710 ~2003
1140654551228130910310 ~2002
1140665321684399192710 ~2003
1140665909912532727310 ~2003
1140697559228139511910 ~2002
11407033871140703387111 ~2003
1140740423228148084710 ~2002
1140772943228154588710 ~2002
1140787931912630344910 ~2003
1140794111228158822310 ~2002
1140799199228159839910 ~2002
1140804083228160816710 ~2002
1140913859228182771910 ~2002
1140915719228183143910 ~2002
11409490031140949003111 ~2003
1140987383228197476710 ~2002
1140988451228197690310 ~2002
1141036097912828877710 ~2003
1141036751228207350310 ~2002
1141043219228208643910 ~2002
1141085111228217022310 ~2002
1141089217684653530310 ~2003
11412020592738884941711 ~2004
Exponent Prime Factor Digits Year
11412031994564812796111 ~2005
1141225451228245090310 ~2002
1141230851228246170310 ~2002
1141289111228257822310 ~2002
1141319243228263848710 ~2002
1141335551228267110310 ~2002
1141342799228268559910 ~2002
1141398239228279647910 ~2002
1141404503228280900710 ~2002
1141406159228281231910 ~2002
1141513319228302663910 ~2002
11415413831141541383111 ~2003
1141691051228338210310 ~2002
1141731443228346288710 ~2002
1141748759228349751910 ~2002
1141767839228353567910 ~2002
1141785347913428277710 ~2003
11417902811826864449711 ~2004
1141795097913436077710 ~2003
1141795703228359140710 ~2002
1141853711228370742310 ~2002
1141924403228384880710 ~2002
1141950913685170547910 ~2003
11419592392740702173711 ~2004
11419632595709816295111 ~2005
Exponent Prime Factor Digits Year
11419700172740728040911 ~2004
1142018621913614896910 ~2003
11420287511142028751111 ~2003
1142041259228408251910 ~2002
1142047583228409516710 ~2002
1142054939228410987910 ~2002
1142073341913658672910 ~2003
1142074091228414818310 ~2002
1142141723228428344710 ~2002
1142190323228438064710 ~2002
1142252063228450412710 ~2002
1142333891228466778310 ~2002
1142340599228468119910 ~2002
1142345219228469043910 ~2002
1142367899913894319310 ~2003
1142403263228480652710 ~2002
1142549519228509903910 ~2002
1142588339228517667910 ~2002
1142611511228522302310 ~2002
1142635859228527171910 ~2002
1142705797685623478310 ~2003
1142729249914183399310 ~2003
1142732999228546599910 ~2002
1142772443228554488710 ~2002
1142777501685666500710 ~2003
Home
4.843.404 digits
e-mail
25-06-08