Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1105503611221100722310 ~2002
1105511417663306850310 ~2003
1105536863221107372710 ~2002
11055667934422267172111 ~2005
1105580243221116048710 ~2002
1105612583221122516710 ~2002
1105613111221122622310 ~2002
1105614437663368662310 ~2003
1105674359221134871910 ~2002
1105689671221137934310 ~2002
1105694077663416446310 ~2003
1105735637663441382310 ~2003
1105763003221152600710 ~2002
1105785671221157134310 ~2002
110578944134279472671112 ~2007
110584228113933612740712 ~2006
1105854251221170850310 ~2002
1105868999221173799910 ~2002
1105869263221173852710 ~2002
11059113796414285998311 ~2005
1105945343221189068710 ~2002
1105948931884759144910 ~2003
1105964593663578755910 ~2003
1105978631221195726310 ~2002
11060063878184447263911 ~2005
Exponent Prime Factor Digits Year
1106013851221202770310 ~2002
1106023343221204668710 ~2002
1106074031221214806310 ~2002
1106077811221215562310 ~2002
1106078639221215727910 ~2002
1106086799221217359910 ~2002
1106134511221226902310 ~2002
11061882472654851792911 ~2004
1106281271221256254310 ~2002
1106284093663770455910 ~2003
1106356271221271254310 ~2002
1106408531221281706310 ~2002
1106460779221292155910 ~2002
1106497237663898342310 ~2003
1106537483221307496710 ~2002
1106543723221308744710 ~2002
11065512194647515119911 ~2005
1106589371221317874310 ~2002
1106607251221321450310 ~2002
1106657939221331587910 ~2002
1106666471221333294310 ~2002
1106804399221360879910 ~2002
1106845739221369147910 ~2002
1106876777664126066310 ~2003
11069253191992465574311 ~2004
Exponent Prime Factor Digits Year
1106939243221387848710 ~2002
110695954314390474059112 ~2006
1106975003221395000710 ~2002
1106975183221395036710 ~2002
1107060937664236562310 ~2003
1107086159221417231910 ~2002
11071197771549967687911 ~2004
1107189263221437852710 ~2002
1107202391221440478310 ~2002
1107266003221453200710 ~2002
1107267659221453531910 ~2002
1107268559221453711910 ~2002
110730822116609623315112 ~2006
1107362411885889928910 ~2003
11073672711993261087911 ~2004
11073999132657759791311 ~2004
11074029314651092310311 ~2005
110740509713953304222312 ~2006
1107481283221496256710 ~2002
1107492131221498426310 ~2002
1107492521664495512710 ~2003
11075397911107539791111 ~2003
1107605651221521130310 ~2002
1107616883221523376710 ~2002
1107618023221523604710 ~2002
Exponent Prime Factor Digits Year
1107636899221527379910 ~2002
1107640883221528176710 ~2002
1107648203221529640710 ~2002
11076703371550738471911 ~2004
1107674339221534867910 ~2002
1107708419221541683910 ~2002
1107709643221541928710 ~2002
11077262711107726271111 ~2003
1107741443221548288710 ~2002
1107743381664646028710 ~2003
11078049611772487937711 ~2004
1107809321664685592710 ~2003
1107834407886267525710 ~2003
1107834661664700796710 ~2003
1107849593664709755910 ~2003
1107887723221577544710 ~2002
1107897299221579459910 ~2002
1107926783221585356710 ~2002
1107934571221586914310 ~2002
1107959423221591884710 ~2002
1107995159221599031910 ~2002
1108002503221600500710 ~2002
1108065971221613194310 ~2002
1108079123221615824710 ~2002
1108109777664865866310 ~2003
Home
4.933.056 digits
e-mail
25-07-20