Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1258019123251603824710 ~2002
1258046351251609270310 ~2002
1258051477754830886310 ~2003
1258080997754848598310 ~2003
12581018211006481456911 ~2004
1258136111251627222310 ~2002
1258139437754883662310 ~2003
1258146371251629274310 ~2002
1258150319251630063910 ~2002
12581657516039195604911 ~2005
1258194961754916976710 ~2003
1258198163251639632710 ~2002
1258232219251646443910 ~2002
1258237283251647456710 ~2002
1258311143251662228710 ~2002
1258322423251664484710 ~2002
12584190173775257051111 ~2005
12585505332013680852911 ~2004
12585732735034293092111 ~2005
1258575359251715071910 ~2002
12585988673020637280911 ~2005
12586286633272434523911 ~2005
12586307992265535438311 ~2004
1258634759251726951910 ~2002
1258642571251728514310 ~2002
Exponent Prime Factor Digits Year
1258664413755198647910 ~2003
1258676123251735224710 ~2002
12586761311258676131111 ~2004
12587485071006998805711 ~2004
12587523714028007587311 ~2005
1258756451251751290310 ~2002
1258819643251763928710 ~2002
1258901999251780399910 ~2002
1258934437755360662310 ~2003
1258953551251790710310 ~2002
12589653191258965319111 ~2004
1259007353755404411910 ~2003
1259018279251803655910 ~2002
12591535371762814951911 ~2004
1259155151251831030310 ~2002
1259180963251836192710 ~2002
1259187313755512387910 ~2003
1259208877755525326310 ~2003
12592149897807132931911 ~2006
1259253491251850698310 ~2002
12592733471259273347111 ~2004
1259284199251856839910 ~2002
1259302223251860444710 ~2002
1259388461755633076710 ~2003
1259451551251890310310 ~2002
Exponent Prime Factor Digits Year
1259504171251900834310 ~2002
1259554097755732458310 ~2003
1259585699251917139910 ~2002
1259586803251917360710 ~2002
1259588651251917730310 ~2002
12596084511007686760911 ~2004
1259638091251927618310 ~2002
1259655263251931052710 ~2002
12596700171763538023911 ~2004
1259743777755846266310 ~2003
1259855141755913084710 ~2003
1259973779251994755910 ~2002
1260024599252004919910 ~2002
1260053699252010739910 ~2002
12600734711260073471111 ~2004
1260102479252020495910 ~2002
1260114431252022886310 ~2002
1260191879252038375910 ~2002
1260195479252039095910 ~2002
1260210443252042088710 ~2002
1260222959252044591910 ~2002
1260240743252048148710 ~2002
1260246731252049346310 ~2002
1260294011252058802310 ~2002
1260297323252059464710 ~2002
Exponent Prime Factor Digits Year
12603113292772684923911 ~2005
1260366623252073324710 ~2002
12605681571008454525711 ~2004
12606508191008520655311 ~2004
1260679163252135832710 ~2002
1260684059252136811910 ~2002
1260692483252138496710 ~2002
1260704183252140836710 ~2002
1260731051252146210310 ~2002
1260816077756489646310 ~2003
1260836039252167207910 ~2002
1260856199252171239910 ~2002
1260914051252182810310 ~2002
1260951683252190336710 ~2002
1261134863252226972710 ~2002
1261176023252235204710 ~2002
126121208945403635204112 ~2008
1261217201756730320710 ~2003
1261266473756759883910 ~2003
12612740991009019279311 ~2004
1261277939252255587910 ~2002
1261284721756770832710 ~2003
1261346363252269272710 ~2002
1261395491252279098310 ~2002
1261396217756837730310 ~2003
Home
4.843.404 digits
e-mail
25-06-08