Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1261414751252282950310 ~2002
1261534619252306923910 ~2002
1261561883252312376710 ~2002
1261585859252317171910 ~2002
1261589963252317992710 ~2002
1261639943252327988710 ~2002
1261656911252331382310 ~2002
1261672283252334456710 ~2002
1261705631252341126310 ~2002
1261717001757030200710 ~2003
1261740251252348050310 ~2002
1261760039252352007910 ~2002
1261817339252363467910 ~2002
1261840799252368159910 ~2002
1261868963252373792710 ~2002
1261893371252378674310 ~2002
1261898531252379706310 ~2002
12618994131766659178311 ~2004
1261908299252381659910 ~2002
12619346691766708536711 ~2004
1262001959252400391910 ~2002
1262002073757201243910 ~2003
1262012351252402470310 ~2002
12620640311262064031111 ~2004
12620719271262071927111 ~2004
Exponent Prime Factor Digits Year
1262098301757258980710 ~2003
12621174471009693957711 ~2004
12621772491767048148711 ~2004
1262181301757308780710 ~2003
12621934793029264349711 ~2005
1262235659252447131910 ~2002
1262267651252453530310 ~2002
1262289971252457994310 ~2002
1262315591252463118310 ~2002
1262327879252465575910 ~2002
12624350211009948016911 ~2004
1262438123252487624710 ~2002
1262449283252489856710 ~2002
1262476283252495256710 ~2002
1262490503252498100710 ~2002
1262540459252508091910 ~2002
1262581493757548895910 ~2003
1262605859252521171910 ~2002
1262619959252523991910 ~2002
1262629451252525890310 ~2002
1262635343252527068710 ~2002
126267284314394470410312 ~2006
1262731271252546254310 ~2002
1262750399252550079910 ~2002
1262775491252555098310 ~2002
Exponent Prime Factor Digits Year
12628031772020485083311 ~2004
12628150671010252053711 ~2004
1262854991252570998310 ~2002
1263046979252609395910 ~2002
12632367712273826187911 ~2004
1263248039252649607910 ~2002
1263255179252651035910 ~2002
1263264361757958616710 ~2003
1263277517757966510310 ~2003
1263294443252658888710 ~2002
1263301211252660242310 ~2002
12633126294800587990311 ~2005
1263342517758005510310 ~2003
1263345277758007166310 ~2003
12633614276064134849711 ~2005
1263362291252672458310 ~2002
12633811491010704919311 ~2004
1263413663252682732710 ~2002
1263424693758054815910 ~2003
1263486179252697235910 ~2002
1263518303252703660710 ~2002
1263527519252705503910 ~2002
1263535439252707087910 ~2002
1263561263252712252710 ~2002
1263744323252748864710 ~2002
Exponent Prime Factor Digits Year
1263750599252750119910 ~2002
12637980315055192124111 ~2005
1263802583252760516710 ~2002
12638053071011044245711 ~2004
1263920279252784055910 ~2002
12639650571011172045711 ~2004
1263987143252797428710 ~2002
1264001759252800351910 ~2002
12640496871011239749711 ~2004
1264101731252820346310 ~2002
1264151873758491123910 ~2003
1264173137758503882310 ~2003
1264178603252835720710 ~2002
1264259651252851930310 ~2002
1264275191252855038310 ~2002
12642799033034271767311 ~2005
1264282913758569747910 ~2003
12642878331770002966311 ~2004
1264333319252866663910 ~2002
1264362119252872423910 ~2002
12643951497839249923911 ~2006
12644292111011543368911 ~2004
1264474811252894962310 ~2002
1264492451252898490310 ~2002
1264594511252918902310 ~2002
Home
4.843.404 digits
e-mail
25-06-08