Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1693815443338763088710 ~2003
1693930811338786162310 ~2003
1693957151338791430310 ~2003
1693960283338792056710 ~2003
169396996717617287656912 ~2007
1694046551338809310310 ~2003
1694048423338809684710 ~2003
16941306175082391851111 ~2006
1694224331338844866310 ~2003
16942577831694257783111 ~2005
16942593193049666774311 ~2005
1694259863338851972710 ~2003
16943708571016622514311 ~2004
1694378963338875792710 ~2003
1694491283338898256710 ~2003
1694505203338901040710 ~2003
1694520323338904064710 ~2003
1694539631338907926310 ~2003
16946365011016781900711 ~2004
1694648363338929672710 ~2003
16946583591355726687311 ~2005
1694679839338935967910 ~2003
1694690999338938199910 ~2003
1694704391338940878310 ~2003
16947603372711616539311 ~2005
Exponent Prime Factor Digits Year
1694837723338967544710 ~2003
1694897819338979563910 ~2003
1695037271339007454310 ~2003
1695075311339015062310 ~2003
16951042933729229444711 ~2006
1695230171339046034310 ~2003
1695260603339052120710 ~2003
1695276659339055331910 ~2003
16952911731017174703911 ~2004
1695312263339062452710 ~2003
16953761691356300935311 ~2005
1695617639339123527910 ~2003
1695647339339129467910 ~2003
16957109711695710971111 ~2005
1695757103339151420710 ~2003
16958632693730899191911 ~2006
1695925103339185020710 ~2003
16959292698140460491311 ~2006
1695934199339186839910 ~2003
1695949583339189916710 ~2003
16960434771356834781711 ~2005
1696080671339216134310 ~2003
1696099679339219935910 ~2003
1696110431339222086310 ~2003
1696119443339223888710 ~2003
Exponent Prime Factor Digits Year
16961484171356918733711 ~2005
1696236383339247276710 ~2003
1696288943339257788710 ~2003
1696466003339293200710 ~2003
1696513919339302783910 ~2003
1696596959339319391910 ~2003
1696608383339321676710 ~2003
16966418572375298599911 ~2005
16966594931017995695911 ~2004
1696692443339338488710 ~2003
1696711811339342362310 ~2003
1696771799339354359910 ~2003
1696772639339354527910 ~2003
1696998731339399746310 ~2003
16970328795769911788711 ~2006
16970392571018223554311 ~2004
16970424111357633928911 ~2005
1697055539339411107910 ~2003
16970927172715348347311 ~2005
1697096903339419380710 ~2003
1697146259339429251910 ~2003
1697191019339438203910 ~2003
16971971092376075952711 ~2005
16973124739165487354311 ~2007
16973127171018387630311 ~2004
Exponent Prime Factor Digits Year
1697375243339475048710 ~2003
1697399519339479903910 ~2003
1697402159339480431910 ~2003
16974172571018450354311 ~2004
1697521643339504328710 ~2003
1697714423339542884710 ~2003
1697798351339559670310 ~2003
1697843183339568636710 ~2003
16979125274074990064911 ~2006
1697972603339594520710 ~2003
1698032543339606508710 ~2003
1698054191339610838310 ~2003
1698089699339617939910 ~2003
16981175811018870548711 ~2004
1698201311339640262310 ~2003
16982532291358602583311 ~2005
16982830311358626424911 ~2005
169829955714945036101712 ~2007
1698389051339677810310 ~2003
1698488339339697667910 ~2003
16984963631698496363111 ~2005
1698507719339701543910 ~2003
16985954871358876389711 ~2005
1698715379339743075910 ~2003
1698768671339753734310 ~2003
Home
4.724.182 digits
e-mail
25-04-13