Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1229164193737498515910 ~2003
1229201081983360864910 ~2003
1229238539245847707910 ~2002
1229241551245848310310 ~2002
1229257583245851516710 ~2002
12292819812704420358311 ~2005
1229295779245859155910 ~2002
1229319659245863931910 ~2002
12293581812704587998311 ~2005
1229376899245875379910 ~2002
1229376983245875396710 ~2002
12293950739835160584111 ~2006
1229405423245881084710 ~2002
1229523923245904784710 ~2002
1229561603245912320710 ~2002
1229579339245915867910 ~2002
1229580431245916086310 ~2002
1229613263245922652710 ~2002
1229634773737780863910 ~2003
1229635091245927018310 ~2002
1229641859245928371910 ~2002
1229708099245941619910 ~2002
1229727143245945428710 ~2002
1229734211245946842310 ~2002
1229779319245955863910 ~2002
Exponent Prime Factor Digits Year
1229790431245958086310 ~2002
1229806133737883679910 ~2003
1229826061737895636710 ~2003
1229879159245975831910 ~2002
1229883131245976626310 ~2002
1229890439245978087910 ~2002
1229901671245980334310 ~2002
1229979791983983832910 ~2003
1230037463246007492710 ~2002
1230038759246007751910 ~2002
1230093719246018743910 ~2002
1230107591246021518310 ~2002
1230126923246025384710 ~2002
1230155999246031199910 ~2002
1230179941738107964710 ~2003
1230278341738167004710 ~2003
1230289499246057899910 ~2002
1230385511246077102310 ~2002
1230407303246081460710 ~2002
1230538703246107740710 ~2002
1230549731246109946310 ~2002
12305553671230555367111 ~2004
1230564253738338551910 ~2003
1230591203246118240710 ~2002
1230609767984487813710 ~2003
Exponent Prime Factor Digits Year
12307076292707556783911 ~2005
12307316392215316950311 ~2004
1230777599246155519910 ~2002
1230799343246159868710 ~2002
1230815897738489538310 ~2003
1230854113738512467910 ~2003
1230886571246177314310 ~2002
1230961799246192359910 ~2002
1230998231246199646310 ~2002
1231020359246204071910 ~2002
1231047659246209531910 ~2002
1231116443246223288710 ~2002
1231132319246226463910 ~2002
1231142579246228515910 ~2002
1231152431246230486310 ~2002
1231161623246232324710 ~2002
1231163873738698323910 ~2003
1231227611246245522310 ~2002
1231323287985058629710 ~2003
1231434443246286888710 ~2002
1231476731246295346310 ~2002
12315255912216746063911 ~2004
1231627697738976618310 ~2003
1231704263246340852710 ~2002
1231709161739025496710 ~2003
Exponent Prime Factor Digits Year
1231710923246342184710 ~2002
1231765163246353032710 ~2002
12317745738622422011111 ~2006
1231862987985490389710 ~2003
1231900031246380006310 ~2002
1231919219246383843910 ~2002
1231928651246385730310 ~2002
1232006903246401380710 ~2002
1232013719246402743910 ~2002
1232015591246403118310 ~2002
1232051801985641440910 ~2003
1232065511246413102310 ~2002
1232104823246420964710 ~2002
1232118143246423628710 ~2002
1232118683246423736710 ~2002
1232300117739380070310 ~2003
12323231892957575653711 ~2005
1232323331246464666310 ~2002
1232356679246471335910 ~2002
1232455331246491066310 ~2002
1232471291246494258310 ~2002
1232487059246497411910 ~2002
123250366311832035164912 ~2006
12325527671232552767111 ~2004
1232561339246512267910 ~2002
Home
4.933.056 digits
e-mail
25-07-20