Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1283222903256644580710 ~2002
1283301191256660238310 ~2002
1283322959256664591910 ~2002
1283348051256669610310 ~2002
1283398043256679608710 ~2002
12834507711026760616911 ~2004
1283551019256710203910 ~2002
12835848591026867887311 ~2004
1283589491256717898310 ~2002
12835997293850799187111 ~2005
1283617091256723418310 ~2002
1283667323256733464710 ~2002
1283687759256737551910 ~2002
1283700563256740112710 ~2002
1283739371256747874310 ~2002
12837487971797248315911 ~2004
12838032732054085236911 ~2004
12838243515135297404111 ~2005
1283834819256766963910 ~2002
1283932439256786487910 ~2002
12839648831283964883111 ~2004
12839693476163052865711 ~2006
12839837391027186991311 ~2004
1284079763256815952710 ~2002
1284114323256822864710 ~2002
Exponent Prime Factor Digits Year
1284195457770517274310 ~2003
1284219071256843814310 ~2002
1284238799256847759910 ~2002
1284255911256851182310 ~2002
1284264277770558566310 ~2003
1284288419256857683910 ~2002
1284320951256864190310 ~2002
1284328757770597254310 ~2003
1284522611256904522310 ~2002
1284560881770736528710 ~2003
1284572279256914455910 ~2002
1284591683256918336710 ~2002
1284615071256923014310 ~2002
1284633659256926731910 ~2002
1284653999256930799910 ~2002
12846730971798542335911 ~2004
1284680051256936010310 ~2002
1284688201770812920710 ~2003
12846996431284699643111 ~2004
12847033312312465995911 ~2004
12847246693854174007111 ~2005
1284764711256952942310 ~2002
1284765851256953170310 ~2002
1284771443256954288710 ~2002
1284799643256959928710 ~2002
Exponent Prime Factor Digits Year
1284800063256960012710 ~2002
1284816503256963300710 ~2002
12848333111284833311111 ~2004
1284872819256974563910 ~2002
1284906743256981348710 ~2002
1284910199256982039910 ~2002
1284910871256982174310 ~2002
1284915143256983028710 ~2002
1284991511256998302310 ~2002
12850288391285028839111 ~2004
1285100291257020058310 ~2002
1285155083257031016710 ~2002
1285156079257031215910 ~2002
1285165631257033126310 ~2002
1285172543257034508710 ~2002
1285221599257044319910 ~2002
1285224113771134467910 ~2003
12852865935912318327911 ~2005
1285298363257059672710 ~2002
1285317191257063438310 ~2002
1285364939257072987910 ~2002
1285372463257074492710 ~2002
1285379597771227758310 ~2003
1285515743257103148710 ~2002
1285529537771317722310 ~2003
Exponent Prime Factor Digits Year
1285531319257106263910 ~2002
1285599013771359407910 ~2003
1285673783257134756710 ~2002
1285714883257142976710 ~2002
1285756739257151347910 ~2002
1285764719257152943910 ~2002
12857846937200394280911 ~2006
1285844099257168819910 ~2002
1285853483257170696710 ~2002
1285911251257182250310 ~2002
1285940003257188000710 ~2002
1285960691257192138310 ~2002
12860090272314816248711 ~2004
1286016551257203310310 ~2002
1286023163257204632710 ~2002
1286046119257209223910 ~2002
1286091671257218334310 ~2002
1286097623257219524710 ~2002
12861286371028902909711 ~2004
12861291671286129167111 ~2004
1286149703257229940710 ~2002
1286170331257234066310 ~2002
1286270957771762574310 ~2003
12862881893858864567111 ~2005
1286330291257266058310 ~2002
Home
4.843.404 digits
e-mail
25-06-08