Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1132096139226419227910 ~2002
1132100111226420022310 ~2002
1132106603226421320710 ~2002
1132140133679284079910 ~2003
1132166111226433222310 ~2002
1132198811226439762310 ~2002
1132226363226445272710 ~2002
1132264717679358830310 ~2003
1132295903226459180710 ~2002
1132313771226462754310 ~2002
1132323779226464755910 ~2002
11324160291585382440711 ~2004
11324480272038406448711 ~2004
1132465751226493150310 ~2002
1132473299226494659910 ~2002
1132489619226497923910 ~2002
1132531583226506316710 ~2002
1132549331226509866310 ~2002
1132563023226512604710 ~2002
1132577711226515542310 ~2002
1132631303226526260710 ~2002
1132635173679581103910 ~2003
1132671539226534307910 ~2002
1132683821906147056910 ~2003
1132752161679651296710 ~2003
Exponent Prime Factor Digits Year
1132756043226551208710 ~2002
1132766333679659799910 ~2003
1132793339226558667910 ~2002
1132796543226559308710 ~2002
11328840012492344802311 ~2004
11328965531812634484911 ~2004
11329653112039337559911 ~2004
1132993583226598716710 ~2002
1132998203226599640710 ~2002
1133005943226601188710 ~2002
1133066717679840030310 ~2003
1133082893679849735910 ~2003
1133088611226617722310 ~2002
1133105423226621084710 ~2002
1133112251226622450310 ~2002
1133121911226624382310 ~2002
11331278111133127811111 ~2003
1133135891226627178310 ~2002
1133159171226631834310 ~2002
11331894892719654773711 ~2004
11332224172719733800911 ~2004
1133243711226648742310 ~2002
1133269673679961803910 ~2003
1133285183226657036710 ~2002
1133394491226678898310 ~2002
Exponent Prime Factor Digits Year
1133410823226682164710 ~2002
1133444171226688834310 ~2002
1133510123226702024710 ~2002
1133528471226705694310 ~2002
1133557751226711550310 ~2002
1133597789906878231310 ~2003
1133624699226724939910 ~2002
11336342773400902831111 ~2005
1133639999226727999910 ~2002
1133691673680215003910 ~2003
11337361932494219624711 ~2004
1133738783226747756710 ~2002
1133780941680268564710 ~2003
11337856577256228204911 ~2005
1133804519907043615310 ~2003
11338351511814136241711 ~2004
1133845859226769171910 ~2002
1133934653680360791910 ~2003
1133970143226794028710 ~2002
1133976101680385660710 ~2003
1134011303226802260710 ~2002
1134044771226808954310 ~2002
1134046517907237213710 ~2003
1134056369907245095310 ~2003
1134058979226811795910 ~2002
Exponent Prime Factor Digits Year
1134088031226817606310 ~2002
11341147195670573595111 ~2005
1134126443226825288710 ~2002
1134145703226829140710 ~2002
1134198881907359104910 ~2003
1134312983226862596710 ~2002
1134323279226864655910 ~2002
1134342971226868594310 ~2002
1134353039226870607910 ~2002
11343648671814983787311 ~2004
1134434051226886810310 ~2002
1134464879226892975910 ~2002
1134516359226903271910 ~2002
1134516431226903286310 ~2002
1134571271226914254310 ~2002
1134574643226914928710 ~2002
1134636479226927295910 ~2002
1134668939226933787910 ~2002
1134706511226941302310 ~2002
1134714803226942960710 ~2002
1134729539226945907910 ~2002
11347312871815570059311 ~2004
11347430111134743011111 ~2003
1134752891226950578310 ~2002
1134775637680865382310 ~2003
Home
4.933.056 digits
e-mail
25-07-20