Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1217556383243511276710 ~2002
1217563211974050568910 ~2003
1217579243243515848710 ~2002
1217586791243517358310 ~2002
1217605283243521056710 ~2002
1217640923243528184710 ~2002
1217710523243542104710 ~2002
1217736083243547216710 ~2002
1217811011243562202310 ~2002
1217815019243563003910 ~2002
1217830331243566066310 ~2002
12178765214871506084111 ~2005
121790231913884086436712 ~2006
1217927363243585472710 ~2002
1217942639243588527910 ~2002
1217944499243588899910 ~2002
1217984903243596980710 ~2002
12180013316820807453711 ~2006
12180026231218002623111 ~2004
1218019091243603818310 ~2002
1218022691243604538310 ~2002
1218039503243607900710 ~2002
1218086423243617284710 ~2002
1218090737974472589710 ~2003
12182026632923686391311 ~2005
Exponent Prime Factor Digits Year
1218382751974706200910 ~2003
1218393419243678683910 ~2002
1218434963243686992710 ~2002
1218455717731073430310 ~2003
1218566033731139619910 ~2003
1218578723243715744710 ~2002
1218612911243722582310 ~2002
1218623579243724715910 ~2002
1218644879243728975910 ~2002
1218679439243735887910 ~2002
1218796919243759383910 ~2002
1218815033731289019910 ~2003
1218815579243763115910 ~2002
1218826463243765292710 ~2002
1218848531243769706310 ~2002
1218881519975105215310 ~2003
1218931979243786395910 ~2002
1218996731243799346310 ~2002
1219057643243811528710 ~2002
1219070591243814118310 ~2002
1219078391243815678310 ~2002
12190869915120165362311 ~2005
1219175183243835036710 ~2002
1219185239243837047910 ~2002
1219200971243840194310 ~2002
Exponent Prime Factor Digits Year
1219298831243859766310 ~2002
1219321871243864374310 ~2002
1219324283243864856710 ~2002
12193522572926445416911 ~2005
1219355363243871072710 ~2002
1219355699243871139910 ~2002
1219381571243876314310 ~2002
12193996031951039364911 ~2004
1219442579243888515910 ~2002
1219451351243890270310 ~2002
1219463603243892720710 ~2002
1219484879243896975910 ~2002
1219557533731734519910 ~2003
1219566217731739730310 ~2003
1219583831243916766310 ~2002
1219610033731766019910 ~2003
12196128712195303167911 ~2004
1219621919243924383910 ~2002
1219659383243931876710 ~2002
1219665143243933028710 ~2002
1219791623243958324710 ~2002
1219824563243964912710 ~2002
1219870117731922070310 ~2003
1219877003243975400710 ~2002
1219889063243977812710 ~2002
Exponent Prime Factor Digits Year
1219897277731938366310 ~2003
1219917791243983558310 ~2002
1220081711244016342310 ~2002
1220101391976081112910 ~2003
1220150663244030132710 ~2002
1220167379244033475910 ~2002
1220174177732104506310 ~2003
1220216219244043243910 ~2002
1220230691244046138310 ~2002
1220277257732166354310 ~2003
1220277419244055483910 ~2002
12203022432928725383311 ~2005
1220346311244069262310 ~2002
1220368991244073798310 ~2002
1220374619244074923910 ~2002
1220386319244077263910 ~2002
1220401163244080232710 ~2002
1220411603244082320710 ~2002
1220417279244083455910 ~2002
1220427011244085402310 ~2002
1220434031244086806310 ~2002
1220495321732297192710 ~2003
1220523779244104755910 ~2002
1220540879244108175910 ~2002
1220602979244120595910 ~2002
Home
4.933.056 digits
e-mail
25-07-20