Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1698810791339762158310 ~2003
1698825731339765146310 ~2003
1698917711339783542310 ~2003
16989370272718299243311 ~2005
1699080791339816158310 ~2003
16991401191359312095311 ~2005
16991475771359318061711 ~2005
16991795112718687217711 ~2005
1699287119339857423910 ~2003
1699308599339861719910 ~2003
16993873011019632380711 ~2004
1699475759339895151910 ~2003
1699607639339921527910 ~2003
16996114371019766862311 ~2004
16996528331019791699911 ~2004
1699750931339950186310 ~2003
16997913971019874838311 ~2004
1699816823339963364710 ~2003
16998235131019894107911 ~2004
16998653531019919211911 ~2004
1699889759339977951910 ~2003
16999211413739826510311 ~2006
1699939931339987986310 ~2003
1699948931339989786310 ~2003
1699956551339991310310 ~2003
Exponent Prime Factor Digits Year
1700022119340004423910 ~2003
1700035163340007032710 ~2003
1700219051340043810310 ~2003
1700242763340048552710 ~2003
1700265491340053098310 ~2003
17002666571020159994311 ~2004
1700293559340058711910 ~2003
1700321891340064378310 ~2003
17004153732720664596911 ~2005
17005018931020301135911 ~2004
1700508371340101674310 ~2003
1700517491340103498310 ~2003
17006090771020365446311 ~2004
1700667443340133488710 ~2003
17006786531020407191911 ~2004
17007490135102247039111 ~2006
1700823671340164734310 ~2003
17008373811020502428711 ~2004
1700848199340169639910 ~2003
17008837571020530254311 ~2004
1700979779340195955910 ~2003
1700988143340197628710 ~2003
1701158999340231799910 ~2003
1701254111340250822310 ~2003
1701281759340256351910 ~2003
Exponent Prime Factor Digits Year
1701290471340258094310 ~2003
1701307799340261559910 ~2003
1701372839340274567910 ~2003
1701413471340282694310 ~2003
1701454031340290806310 ~2003
1701456983340291396710 ~2003
17014877293743273003911 ~2006
1701592943340318588710 ~2003
1701602783340320556710 ~2003
1701717359340343471910 ~2003
1701732239340346447910 ~2003
1701736859340347371910 ~2003
17017544332382456206311 ~2005
17017892391361431391311 ~2005
1701822299340364459910 ~2003
17018512732382591782311 ~2005
1701902879340380575910 ~2003
17020401131021224067911 ~2004
1702042019340408403910 ~2003
1702069643340413928710 ~2003
17021219211361697536911 ~2005
170223070914979630239312 ~2007
1702287011340457402310 ~2003
1702293863340458772710 ~2003
1702337723340467544710 ~2003
Exponent Prime Factor Digits Year
1702426283340485256710 ~2003
17025217011021513020711 ~2004
1702552991340510598310 ~2003
17025756611021545396711 ~2004
1702635899340527179910 ~2003
1702637903340527580710 ~2003
1702690883340538176710 ~2003
1702704383340540876710 ~2003
1702736663340547332710 ~2003
1702758191340551638310 ~2003
17027990831702799083111 ~2005
17030719071362457525711 ~2005
1703167283340633456710 ~2003
1703169983340633996710 ~2003
17032578611021954716711 ~2004
1703278319340655663910 ~2003
1703286503340657300710 ~2003
17033555411022013324711 ~2004
1703444651340688930310 ~2003
1703469143340693828710 ~2003
1703493359340698671910 ~2003
17035126611022107596711 ~2004
1703585063340717012710 ~2003
1703674163340734832710 ~2003
17037009411022220564711 ~2004
Home
4.724.182 digits
e-mail
25-04-13