Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1507301513904380907910 ~2004
1507327541904396524710 ~2004
1507420751301484150310 ~2003
1507453091301490618310 ~2003
1507477177904486306310 ~2004
15075842231507584223111 ~2004
15076125672412180107311 ~2005
1507647191301529438310 ~2003
1507668551301533710310 ~2003
1507706413904623847910 ~2004
1507723213904633927910 ~2004
1507782203301556440710 ~2003
1507805303301561060710 ~2003
1507894331301578866310 ~2003
1508016431301603286310 ~2003
1508064179301612835910 ~2003
1508084111301616822310 ~2003
15080867633619408231311 ~2005
1508180711301636142310 ~2003
1508187251301637450310 ~2003
15082756611206620528911 ~2004
1508341511301668302310 ~2003
1508392043301678408710 ~2003
1508625491301725098310 ~2003
1508627111301725422310 ~2003
Exponent Prime Factor Digits Year
1508627639301725527910 ~2003
1508628479301725695910 ~2003
1508712671301742534310 ~2003
1508730623301746124710 ~2003
1508850659301770131910 ~2003
1508876111301775222310 ~2003
15088781691207102535311 ~2004
1508938073905362843910 ~2004
1508942951301788590310 ~2003
15089692391508969239111 ~2004
1509003539301800707910 ~2003
1509020459301804091910 ~2003
1509086123301817224710 ~2003
1509096203301819240710 ~2003
1509118763301823752710 ~2003
15091248791509124879111 ~2004
1509166259301833251910 ~2003
1509168539301833707910 ~2003
1509231539301846307910 ~2003
1509278579301855715910 ~2003
1509295439301859087910 ~2003
1509297203301859440710 ~2003
1509299651301859930310 ~2003
1509313979301862795910 ~2003
1509367043301873408710 ~2003
Exponent Prime Factor Digits Year
1509367319301873463910 ~2003
15095185312717133355911 ~2005
1509522061905713236710 ~2004
1509541739301908347910 ~2003
1509599111301919822310 ~2003
1509604619301920923910 ~2003
1509629171301925834310 ~2003
1509671063301934212710 ~2003
1509736297905841778310 ~2004
1509866243301973248710 ~2003
1509901199301980239910 ~2003
1509910823301982164710 ~2003
1509965519301993103910 ~2003
1510010003302002000710 ~2003
1510022939302004587910 ~2003
15100791433624189943311 ~2005
1510159751302031950310 ~2003
1510254059302050811910 ~2003
1510301951302060390310 ~2003
15103969191208317535311 ~2004
1510433531302086706310 ~2003
15104752071208380165711 ~2004
1510486493906291895910 ~2004
15104923316344067790311 ~2006
1510495223302099044710 ~2003
Exponent Prime Factor Digits Year
1510513561906308136710 ~2004
1510525097906315058310 ~2004
1510543337906326002310 ~2004
1510561763302112352710 ~2003
1510594223302118844710 ~2003
1510622999302124599910 ~2003
1510644683302128936710 ~2003
15106597391510659739111 ~2004
1510682051302136410310 ~2003
1510723199302144639910 ~2003
1510759091302151818310 ~2003
1510823663302164732710 ~2003
1510922377906553426310 ~2004
1510963739302192747910 ~2003
15110083332417613332911 ~2005
1511038799302207759910 ~2003
15110508431511050843111 ~2004
15110563991511056399111 ~2004
1511062961906637776710 ~2004
15110844891208867591311 ~2004
1511104631302220926310 ~2003
151112180330222436060112 ~2008
15111543192720077774311 ~2005
1511167271302233454310 ~2003
15111787492115650248711 ~2005
Home
4.843.404 digits
e-mail
25-06-08