Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18425797731105547863911 ~2005
18425970471474077637711 ~2005
1842612263368522452710 ~2003
18426236778844593649711 ~2007
1842662231368532446310 ~2003
18426816891474145351311 ~2005
1842761279368552255910 ~2003
1842830519368566103910 ~2003
1842834611368566922310 ~2003
18428937771474315021711 ~2005
1842909311368581862310 ~2003
18429548118846183092911 ~2007
1842968399368593679910 ~2003
1842975131368595026310 ~2003
18429867372948778779311 ~2006
18429925811105795548711 ~2005
18430227371105813642311 ~2005
1843058603368611720710 ~2003
1843090871368618174310 ~2003
1843172711368634542310 ~2003
18431772912949083665711 ~2006
18431880011105912800711 ~2005
1843191803368638360710 ~2003
1843196843368639368710 ~2003
18432059331105923559911 ~2005
Exponent Prime Factor Digits Year
18433795211106027712711 ~2005
1843417403368683480710 ~2003
18434226312949476209711 ~2006
18434468211106068092711 ~2005
1843470851368694170310 ~2003
18435825111474866008911 ~2005
18435927494424622597711 ~2006
1843625111368725022310 ~2003
1843660739368732147910 ~2003
1843749191368749838310 ~2003
18438016991843801699111 ~2005
1843844963368768992710 ~2003
18438767572581427459911 ~2005
1843952471368790494310 ~2003
1843969619368793923910 ~2003
1843995911368799182310 ~2003
1844008583368801716710 ~2003
18440952234425828535311 ~2006
1844099303368819860710 ~2003
1844111903368822380710 ~2003
18441685271844168527111 ~2005
1844337263368867452710 ~2003
1844367419368873483910 ~2003
1844414639368882927910 ~2003
18445140194426833645711 ~2006
Exponent Prime Factor Digits Year
1844616419368923283910 ~2003
1844655551368931110310 ~2003
18447613331106856799911 ~2005
18448098774427543704911 ~2006
1844814203368962840710 ~2003
1844845199368969039910 ~2003
1844857271368971454310 ~2003
1844885699368977139910 ~2003
1844900471368980094310 ~2003
18449706711475976536911 ~2005
1844994491368998898310 ~2003
1845000203369000040710 ~2003
1845008771369001754310 ~2003
1845072731369014546310 ~2003
1845117119369023423910 ~2003
1845165011369033002310 ~2003
18452830577381132228111 ~2007
1845374159369074831910 ~2003
1845412319369082463910 ~2003
1845448883369089776710 ~2003
1845455831369091166310 ~2003
1845565751369113150310 ~2003
1845571463369114292710 ~2003
18456143211107368592711 ~2005
18456288011107377280711 ~2005
Exponent Prime Factor Digits Year
1845771971369154394310 ~2003
1845836879369167375910 ~2003
1845848111369169622310 ~2003
1845874031369174806310 ~2003
1845880703369176140710 ~2003
1846011539369202307910 ~2003
18460236172584433063911 ~2005
1846044443369208888710 ~2003
1846047839369209567910 ~2003
1846110131369222026310 ~2003
18461590372584622651911 ~2005
1846272839369254567910 ~2003
1846282631369256526310 ~2003
1846313351369262670310 ~2003
18463532775539059831111 ~2006
1846440443369288088710 ~2003
1846533131369306626310 ~2003
1846570763369314152710 ~2003
1846614083369322816710 ~2003
1846661951369332390310 ~2003
1846671419369334283910 ~2003
18466938111477355048911 ~2005
18467169171108030150311 ~2005
18467598011108055880711 ~2005
18470135211477610816911 ~2005
Home
4.724.182 digits
e-mail
25-04-13