Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18470838972955334235311 ~2006
1847104739369420947910 ~2003
1847176211369435242310 ~2003
1847283239369456647910 ~2003
18473059311477844744911 ~2005
1847328491369465698310 ~2003
18473476931108408615911 ~2005
18473556411108413384711 ~2005
1847358059369471611910 ~2003
1847479451369495890310 ~2003
1847512679369502535910 ~2003
18475373811108522428711 ~2005
1847749199369549839910 ~2003
1847749331369549866310 ~2003
18478302411108698144711 ~2005
1847846303369569260710 ~2003
1847852243369570448710 ~2003
18479478171478358253711 ~2005
1847981279369596255910 ~2003
1847995211369599042310 ~2003
1848031331369606266310 ~2003
1848129011369625802310 ~2003
184816876111458646318312 ~2007
1848197699369639539910 ~2003
184820643113307086303312 ~2007
Exponent Prime Factor Digits Year
1848220571369644114310 ~2003
1848251063369650212710 ~2003
18482796771108967806311 ~2005
1848321743369664348710 ~2003
18483256212957320993711 ~2006
18484485193327207334311 ~2006
1848476111369695222310 ~2003
1848606251369721250310 ~2003
1848652859369730571910 ~2003
18486797694436831445711 ~2006
1848714599369742919910 ~2003
1848721379369744275910 ~2003
1848738299369747659910 ~2003
18487689411109261364711 ~2005
1848780803369756160710 ~2003
1848790739369758147910 ~2003
1848852899369770579910 ~2003
1849018043369803608710 ~2003
1849053023369810604710 ~2003
18490714931109442895911 ~2005
18491170913328410763911 ~2006
18491561571109493694311 ~2005
1849158539369831707910 ~2003
1849206731369841346310 ~2003
1849255403369851080710 ~2003
Exponent Prime Factor Digits Year
1849405931369881186310 ~2003
18494761031849476103111 ~2005
1849540391369908078310 ~2003
1849617083369923416710 ~2003
184971954153271922780912 ~2009
18497236615919115715311 ~2006
18498908771109934526311 ~2005
18501040211110062412711 ~2005
1850122931370024586310 ~2003
1850157131370031426310 ~2003
1850233019370046603910 ~2003
18502577771110154666311 ~2005
1850266679370053335910 ~2003
18503316111480265288911 ~2005
1850548499370109699910 ~2003
1850606123370121224710 ~2003
1850749223370149844710 ~2003
1850753171370150634310 ~2003
1850758223370151644710 ~2003
1850837711370167542310 ~2003
1850854259370170851910 ~2003
1850913299370182659910 ~2003
1850919443370183888710 ~2003
18512234331110734059911 ~2005
1851226703370245340710 ~2003
Exponent Prime Factor Digits Year
18512475371110748522311 ~2005
1851329279370265855910 ~2003
18513385577405354228111 ~2007
1851508079370301615910 ~2003
1851604211370320842310 ~2003
1851691403370338280710 ~2003
1851704639370340927910 ~2003
1851735731370347146310 ~2003
1851764639370352927910 ~2003
1851770603370354120710 ~2003
1851774803370354960710 ~2003
18518123211111087392711 ~2005
18518810211481504816911 ~2005
1851959639370391927910 ~2003
1851993779370398755910 ~2003
1852085351370417070310 ~2003
18520887371111253242311 ~2005
1852114151370422830310 ~2003
18521861694445246805711 ~2006
18521876571111312594311 ~2005
18523071612963691457711 ~2006
1852350911370470182310 ~2003
1852427579370485515910 ~2003
1852461119370492223910 ~2003
18524754471481980357711 ~2005
Home
4.724.182 digits
e-mail
25-04-13