Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1857037079371407415910 ~2003
1857195971371439194310 ~2003
1857242963371448592710 ~2003
18572521211114351272711 ~2005
1857286331371457266310 ~2003
18573167572600243459911 ~2005
18573182692600245576711 ~2005
1857326459371465291910 ~2003
1857336251371467250310 ~2003
1857472583371494516710 ~2003
18575732695572719807111 ~2006
1857591383371518276710 ~2003
1857697571371539514310 ~2003
18577122011114627320711 ~2005
18577318571114639114311 ~2005
1857772643371554528710 ~2003
1857776951371555390310 ~2003
1857959651371591930310 ~2003
18579823394459157613711 ~2006
18580074912972811985711 ~2006
18580399611486431968911 ~2005
1858059179371611835910 ~2003
1858101911371620382310 ~2003
18581372211486509776911 ~2005
1858170071371634014310 ~2003
Exponent Prime Factor Digits Year
18582656271486612501711 ~2005
1858307063371661412710 ~2003
1858387991371677598310 ~2003
1858415519371683103910 ~2003
1858487843371697568710 ~2003
18585326391486826111311 ~2005
1858676003371735200710 ~2003
1858701671371740334310 ~2003
1858791323371758264710 ~2003
1858794191371758838310 ~2003
1858803371371760674310 ~2003
1858812779371762555910 ~2003
1858861883371772376710 ~2003
1858996523371799304710 ~2003
18590070671859007067111 ~2005
1859018099371803619910 ~2003
1859094599371818919910 ~2003
1859108183371821636710 ~2003
18591234072974597451311 ~2006
18592064171115523850311 ~2005
18592354911487388392911 ~2005
18592532171115551930311 ~2005
1859288159371857631910 ~2003
1859327231371865446310 ~2003
1859433143371886628710 ~2003
Exponent Prime Factor Digits Year
1859463719371892743910 ~2003
1859479103371895820710 ~2003
18595003371115700202311 ~2005
1859509199371901839910 ~2003
1859600579371920115910 ~2003
1859624759371924951910 ~2003
1859849879371969975910 ~2003
1859906351371981270310 ~2003
18600106971116006418311 ~2005
1860106931372021386310 ~2003
1860141659372028331910 ~2003
18601548171116092890311 ~2005
1860263351372052670310 ~2003
1860285263372057052710 ~2003
1860315071372063014310 ~2003
1860343763372068752710 ~2003
1860525659372105131910 ~2003
1860546959372109391910 ~2003
1860717863372143572710 ~2003
1860725903372145180710 ~2003
1860777071372155414310 ~2003
18609192198932412251311 ~2007
18609681411488774512911 ~2005
1860983543372196708710 ~2003
1861005203372201040710 ~2003
Exponent Prime Factor Digits Year
1861013123372202624710 ~2003
1861182443372236488710 ~2003
18613169095583950727111 ~2006
186136368719730455082312 ~2008
1861380491372276098310 ~2003
18614751771489180141711 ~2005
1861488599372297719910 ~2003
1861492751372298550310 ~2003
1861493219372298643910 ~2003
18614956212978392993711 ~2006
1861499723372299944710 ~2003
1861512959372302591910 ~2003
18615191571489215325711 ~2005
1861595159372319031910 ~2003
18616280391489302431311 ~2005
1861667123372333424710 ~2003
18617119975585135991111 ~2006
1861995251372399050310 ~2003
1862041283372408256710 ~2003
1862074559372414911910 ~2003
1862078651372415730310 ~2003
1862264639372452927910 ~2003
18622716171489817293711 ~2005
1862459831372491966310 ~2003
18624739331117484359911 ~2005
Home
4.724.182 digits
e-mail
25-04-13