Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1862492003372498400710 ~2003
18625021974470005272911 ~2006
18625098671862509867111 ~2005
1862560571372512114310 ~2003
1862631983372526396710 ~2003
1862636123372527224710 ~2003
18626688131117601287911 ~2005
1862700683372540136710 ~2003
18627390011117643400711 ~2005
1862754683372550936710 ~2003
1862759771372551954310 ~2003
18628310771117698646311 ~2005
18630091735589027519111 ~2006
1863009383372601876710 ~2003
18631051931117863115911 ~2005
18631134791863113479111 ~2005
1863138779372627755910 ~2003
1863179771372635954310 ~2003
1863333779372666755910 ~2003
18633496132608689458311 ~2005
1863363923372672784710 ~2003
1863372971372674594310 ~2003
1863417071372683414310 ~2003
1863427211372685442310 ~2003
18635697591490855807311 ~2005
Exponent Prime Factor Digits Year
18635944011490875520911 ~2005
1863632591372726518310 ~2003
18636682971490934637711 ~2005
1863715979372743195910 ~2003
18637553596336768220711 ~2006
1863768899372753779910 ~2003
1863863951372772790310 ~2003
1863873083372774616710 ~2003
1863886631372777326310 ~2003
18638949793355010962311 ~2006
1863927011372785402310 ~2003
18639889611491191168911 ~2005
18640154294473637029711 ~2006
18640174371118410462311 ~2005
1864138931372827786310 ~2003
18641938011491355040911 ~2005
18642786171491422893711 ~2005
1864286111372857222310 ~2003
1864358579372871715910 ~2003
1864385723372877144710 ~2003
18644116931118647015911 ~2005
1864428911372885782310 ~2003
18644393098949308683311 ~2007
1864465331372893066310 ~2003
1864497671372899534310 ~2003
Exponent Prime Factor Digits Year
1864503419372900683910 ~2003
18645191411118711484711 ~2005
1864549091372909818310 ~2003
1864641491372928298310 ~2003
18646806611118808396711 ~2005
18647424311864742431111 ~2005
18648325811118899548711 ~2005
18648658791491892703311 ~2005
1864895243372979048710 ~2003
18649235211118954112711 ~2005
18649790932610970730311 ~2005
18649989311864998931111 ~2005
18650591811119035508711 ~2005
18650720171119043210311 ~2005
1865079731373015946310 ~2003
18650964611119057876711 ~2005
1865142803373028560710 ~2003
18652842771119170566311 ~2005
1865330399373066079910 ~2003
18653632372611508531911 ~2005
18653683911492294712911 ~2005
18653763771119225826311 ~2005
1865378951373075790310 ~2003
1865393063373078612710 ~2003
18653998311492319864911 ~2005
Exponent Prime Factor Digits Year
1865428991373085798310 ~2003
18654464471865446447111 ~2005
1865495759373099151910 ~2003
1865731331373146266310 ~2003
18658178571492654285711 ~2005
1865828579373165715910 ~2003
1865855003373171000710 ~2003
1865901683373180336710 ~2003
18659112771119546766311 ~2005
18659898411119593904711 ~2005
18660450291492836023311 ~2005
18663334331119800059911 ~2005
1866381311373276262310 ~2003
1866388763373277752710 ~2003
18663896211493111696911 ~2005
1866448739373289747910 ~2003
18665784711493262776911 ~2005
1866863039373372607910 ~2003
1866958763373391752710 ~2003
1867019723373403944710 ~2003
18671185211120271112711 ~2005
18671211437468484572111 ~2007
18671219811120273188711 ~2005
1867139591373427918310 ~2003
18671945231867194523111 ~2005
Home
4.724.182 digits
e-mail
25-04-13