Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
15226961814568088543111 ~2006
15227606211218208496911 ~2004
1522819019304563803910 ~2003
1522947683304589536710 ~2003
1523043803304608760710 ~2003
1523053991304610798310 ~2003
1523075531304615106310 ~2003
1523116643304623328710 ~2003
1523118959304623791910 ~2003
1523207663304641532710 ~2003
1523217539304643507910 ~2003
1523245739304649147910 ~2003
1523248193913948915910 ~2004
1523304311304660862310 ~2003
15233114093655947381711 ~2005
1523357351304671470310 ~2003
1523676299304735259910 ~2003
1523707103304741420710 ~2003
15237140391218971231311 ~2004
1523724563304744912710 ~2003
15237664793657039549711 ~2005
1523842283304768456710 ~2003
1523894219304778843910 ~2003
1523979323304795864710 ~2003
1524062651304812530310 ~2003
Exponent Prime Factor Digits Year
1524109943304821988710 ~2003
15241132491219290599311 ~2004
15241293793657910509711 ~2005
1524144263304828852710 ~2003
1524163583304832716710 ~2003
1524198023304839604710 ~2003
15242147091219371767311 ~2004
1524233003304846600710 ~2003
15242678938231046622311 ~2006
1524342299304868459910 ~2003
1524363059304872611910 ~2003
1524365393914619235910 ~2004
1524428723304885744710 ~2003
1524463439304892687910 ~2003
1524477013914686207910 ~2004
1524528373914717023910 ~2004
15245777393658986573711 ~2005
1524588083304917616710 ~2003
1524642299304928459910 ~2003
152466491935677159104712 ~2008
1524769957914861974310 ~2004
1524769979304953995910 ~2003
15247890591219831247311 ~2004
1524796913914878147910 ~2004
1524809843304961968710 ~2003
Exponent Prime Factor Digits Year
1524830663304966132710 ~2003
1524846731304969346310 ~2003
1524854651304970930310 ~2003
1525037461915022476710 ~2004
1525075619305015123910 ~2003
15250935711220074856911 ~2004
1525097279305019455910 ~2003
15252233932135312750311 ~2005
1525279163305055832710 ~2003
1525284671305056934310 ~2003
1525558261915334956710 ~2004
1525605803305121160710 ~2003
15256408491220512679311 ~2004
1525736759305147351910 ~2003
1525784363305156872710 ~2003
1525790501915474300710 ~2004
1525881011305176202310 ~2003
1525888139305177627910 ~2003
1525894523305178904710 ~2003
1525912463305182492710 ~2003
1525957523305191504710 ~2003
15261016372136542291911 ~2005
15261241671220899333711 ~2004
1526147351305229470310 ~2003
1526179093915707455910 ~2004
Exponent Prime Factor Digits Year
1526194811305238962310 ~2003
1526215319305243063910 ~2003
1526225999305245199910 ~2003
1526257921915754752710 ~2004
1526338313915802987910 ~2004
15264467591526446759111 ~2004
1526449583305289916710 ~2003
1526536261915921756710 ~2004
1526594999305318999910 ~2003
1526779921916067952710 ~2004
1526780351305356070310 ~2003
1526834663305366932710 ~2003
1526844743305368948710 ~2003
1526874473916124683910 ~2004
1526895677916137406310 ~2004
15269297091221543767311 ~2004
1526957423305391484710 ~2003
1526962043305392408710 ~2003
1526990819305398163910 ~2003
1527067319305413463910 ~2003
1527080099305416019910 ~2003
1527115511305423102310 ~2003
1527151271305430254310 ~2003
15273310371221864829711 ~2004
1527369059305473811910 ~2003
Home
4.843.404 digits
e-mail
25-06-08