Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18672668991493813519311 ~2005
18672891131120373467911 ~2005
1867303799373460759910 ~2003
1867331363373466272710 ~2003
18673657131120419427911 ~2005
1867476119373495223910 ~2003
1867493219373498643910 ~2003
1867591079373518215910 ~2003
18676236971120574218311 ~2005
18676499411120589964711 ~2005
1867745471373549094310 ~2003
1867747103373549420710 ~2003
1867755203373551040710 ~2003
18677616971120657018311 ~2005
18677926391867792639111 ~2005
1867794179373558835910 ~2003
18677965371494237229711 ~2005
1867863659373572731910 ~2003
1867912523373582504710 ~2003
18679424991494353999311 ~2005
1867995851373599170310 ~2003
1868010563373602112710 ~2003
1868112611373622522310 ~2003
1868148959373629791910 ~2003
1868153543373630708710 ~2003
Exponent Prime Factor Digits Year
18681624111494529928911 ~2005
1868198639373639727910 ~2003
1868206859373641371910 ~2003
1868267183373653436710 ~2003
1868335043373667008710 ~2003
18683378711868337871111 ~2005
1868366183373673236710 ~2003
18684789011121087340711 ~2005
1868551103373710220710 ~2003
1868551511373710302310 ~2003
1868556551373711310310 ~2003
1868576123373715224710 ~2003
1868597543373719508710 ~2003
18687035391494962831311 ~2005
1868842991373768598310 ~2003
1868896811373779362310 ~2003
1868923223373784644710 ~2003
1869065651373813130310 ~2003
1869074159373814831910 ~2003
18690774111495261928911 ~2005
1869227879373845575910 ~2003
18692873271495429861711 ~2005
1869335003373867000710 ~2003
1869440159373888031910 ~2003
1869467471373893494310 ~2003
Exponent Prime Factor Digits Year
1869527651373905530310 ~2003
1869542459373908491910 ~2003
1869663839373932767910 ~2003
18696707211495736576911 ~2005
1869782483373956496710 ~2003
1869844103373968820710 ~2003
18698945713365810227911 ~2006
1869912923373982584710 ~2003
1869945023373989004710 ~2003
18700589171122035350311 ~2005
1870065311374013062310 ~2003
18700678791496054303311 ~2005
1870092839374018567910 ~2003
18701357391496108591311 ~2005
18701371971496109757711 ~2005
1870174739374034947910 ~2003
18702131931122127915911 ~2005
1870213259374042651910 ~2003
1870268171374053634310 ~2003
1870276823374055364710 ~2003
1870295159374059031910 ~2003
1870311671374062334310 ~2003
1870323803374064760710 ~2003
18703450671496276053711 ~2005
1870385243374077048710 ~2003
Exponent Prime Factor Digits Year
1870398119374079623910 ~2003
18704233491496338679311 ~2005
1870441019374088203910 ~2003
18704704311496376344911 ~2005
18704955731122297343911 ~2005
1870541531374108306310 ~2003
187055200940029812992712 ~2008
18705744171496459533711 ~2005
1870579631374115926310 ~2003
1870580819374116163910 ~2003
1870645079374129015910 ~2003
18706667815986133699311 ~2006
1870716251374143250310 ~2003
1870721543374144308710 ~2003
18707364011122441840711 ~2005
1870755443374151088710 ~2003
1870769363374153872710 ~2003
18707908191496632655311 ~2005
18707935393367428370311 ~2006
1870798151374159630310 ~2003
1870799999374159999910 ~2003
1870805351374161070310 ~2003
1870909511374181902310 ~2003
18709409091496752727311 ~2005
1870972931374194586310 ~2003
Home
4.724.182 digits
e-mail
25-04-13