Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
20096849691607747975311 ~2005
20097150134421373028711 ~2006
2009738411401947682310 ~2004
2009753423401950684710 ~2004
2009762399401952479910 ~2004
2009830211401966042310 ~2004
20098717611205923056711 ~2005
2010036551402007310310 ~2004
20102420331206145219911 ~2005
2010343259402068651910 ~2004
2010418919402083783910 ~2004
201048153118094333779112 ~2008
2010506363402101272710 ~2004
2010577091402115418310 ~2004
20106416211608513296911 ~2005
2010678203402135640710 ~2004
2010835763402167152710 ~2004
2010953159402190631910 ~2004
20109790371608783229711 ~2005
2011079711402215942310 ~2004
20110830771206649846311 ~2005
2011125971402225194310 ~2004
2011253999402250799910 ~2004
2011314719402262943910 ~2004
2011328183402265636710 ~2004
Exponent Prime Factor Digits Year
2011339019402267803910 ~2004
2011353791402270758310 ~2004
2011364123402272824710 ~2004
20114779011206886740711 ~2005
2011485779402297155910 ~2004
20114917011206895020711 ~2005
2011500899402300179910 ~2004
20115751731206945103911 ~2005
20116568771206994126311 ~2005
20117213513621098431911 ~2006
2011756391402351278310 ~2004
2011784363402356872710 ~2004
2011795091402359018310 ~2004
2011801163402360232710 ~2004
2011887131402377426310 ~2004
2011905911402381182310 ~2004
2011908023402381604710 ~2004
20119321512011932151111 ~2005
201204239317303564579912 ~2008
2012081243402416248710 ~2004
20121000611207260036711 ~2005
20122105331207326319911 ~2005
2012219039402443807910 ~2004
20122793171207367590311 ~2005
2012351843402470368710 ~2004
Exponent Prime Factor Digits Year
20123874373219819899311 ~2006
2012392451402478490310 ~2004
2012621651402524330310 ~2004
2012623859402524771910 ~2004
2012650511402530102310 ~2004
2012672771402534554310 ~2004
201267582717711547277712 ~2008
20127352971207641178311 ~2005
2012750699402550139910 ~2004
2012792543402558508710 ~2004
2012811191402562238310 ~2004
2012922911402584582310 ~2004
2013005531402601106310 ~2004
20131719473623709504711 ~2006
20131729371207903762311 ~2005
2013192911402638582310 ~2004
20132941919663812116911 ~2007
2013301739402660347910 ~2004
2013427439402685487910 ~2004
2013521423402704284710 ~2004
2013526331402705266310 ~2004
20135425611208125536711 ~2005
2013677651402735530310 ~2004
2013702143402740428710 ~2004
2013776183402755236710 ~2004
Exponent Prime Factor Digits Year
20138263512013826351111 ~2005
20138331531208299891911 ~2005
2013862139402772427910 ~2004
20138628496041588547111 ~2007
2013929843402785968710 ~2004
2013935279402787055910 ~2004
2013942923402788584710 ~2004
2013959411402791882310 ~2004
20139598132819543738311 ~2006
20140479771208428786311 ~2005
20140631712014063171111 ~2005
20140647291611251783311 ~2005
2014092851402818570310 ~2004
20141606094833985461711 ~2006
20143368711611469496911 ~2005
20143437172820081203911 ~2006
2014439639402887927910 ~2004
2014465391402893078310 ~2004
2014494719402898943910 ~2004
20145628191611650255311 ~2005
2014660523402932104710 ~2004
20147036112014703611111 ~2005
2014799483402959896710 ~2004
20148385491611870839311 ~2005
2014977539402995507910 ~2004
Home
4.828.532 digits
e-mail
25-06-01