Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1695617639339123527910 ~2003
1695647339339129467910 ~2003
16957109711695710971111 ~2005
1695757103339151420710 ~2003
16958632693730899191911 ~2006
1695925103339185020710 ~2003
16959292698140460491311 ~2006
1695934199339186839910 ~2003
1695949583339189916710 ~2003
16960434771356834781711 ~2005
1696080671339216134310 ~2003
1696099679339219935910 ~2003
1696110431339222086310 ~2003
1696119443339223888710 ~2003
16961484171356918733711 ~2005
1696236383339247276710 ~2003
1696288943339257788710 ~2003
1696466003339293200710 ~2003
1696513919339302783910 ~2003
1696596959339319391910 ~2003
1696608383339321676710 ~2003
16966418572375298599911 ~2005
16966594931017995695911 ~2004
1696692443339338488710 ~2003
1696711811339342362310 ~2003
Exponent Prime Factor Digits Year
1696771799339354359910 ~2003
1696772639339354527910 ~2003
1696998731339399746310 ~2003
16970328795769911788711 ~2006
16970392571018223554311 ~2004
16970424111357633928911 ~2005
1697055539339411107910 ~2003
16970927172715348347311 ~2005
1697096903339419380710 ~2003
1697138939339427787910 ~2003
1697146259339429251910 ~2003
1697191019339438203910 ~2003
16971971092376075952711 ~2005
16973124739165487354311 ~2007
16973127171018387630311 ~2004
1697375243339475048710 ~2003
1697399519339479903910 ~2003
1697402159339480431910 ~2003
16974172571018450354311 ~2004
1697521643339504328710 ~2003
1697714423339542884710 ~2003
1697798351339559670310 ~2003
1697843183339568636710 ~2003
16979125274074990064911 ~2006
1697972603339594520710 ~2003
Exponent Prime Factor Digits Year
1698032543339606508710 ~2003
1698054191339610838310 ~2003
1698089699339617939910 ~2003
16981175811018870548711 ~2004
1698201311339640262310 ~2003
16982532291358602583311 ~2005
16982830311358626424911 ~2005
169829955714945036101712 ~2007
1698389051339677810310 ~2003
1698488339339697667910 ~2003
16984963631698496363111 ~2005
1698507719339701543910 ~2003
1698584399339716879910 ~2003
16985954871358876389711 ~2005
1698715379339743075910 ~2003
1698768671339753734310 ~2003
1698810791339762158310 ~2003
1698825731339765146310 ~2003
1698917711339783542310 ~2003
16989370272718299243311 ~2005
1699080791339816158310 ~2003
1699111439339822287910 ~2003
16991401191359312095311 ~2005
16991475771359318061711 ~2005
16991795112718687217711 ~2005
Exponent Prime Factor Digits Year
1699287119339857423910 ~2003
1699308599339861719910 ~2003
16993873011019632380711 ~2004
1699475759339895151910 ~2003
1699607639339921527910 ~2003
16996114371019766862311 ~2004
16996528331019791699911 ~2004
1699750931339950186310 ~2003
16997913971019874838311 ~2004
1699816823339963364710 ~2003
16998235131019894107911 ~2004
16998653531019919211911 ~2004
1699889759339977951910 ~2003
16999211413739826510311 ~2006
1699939931339987986310 ~2003
1699948931339989786310 ~2003
1699956551339991310310 ~2003
1700022119340004423910 ~2003
1700035163340007032710 ~2003
1700219051340043810310 ~2003
1700242763340048552710 ~2003
1700265491340053098310 ~2003
17002666571020159994311 ~2004
1700293559340058711910 ~2003
1700321891340064378310 ~2003
Home
4.933.056 digits
e-mail
25-07-20