Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2722260683544452136710 ~2005
27223043992177843519311 ~2006
2722353479544470695910 ~2005
2722463819544492763910 ~2005
2722542191544508438310 ~2005
2722567619544513523910 ~2005
2722587443544517488710 ~2005
27227076771633624606311 ~2006
2722774139544554827910 ~2005
2722862123544572424710 ~2005
2722969943544593988710 ~2005
2723038691544607738310 ~2005
27230760712178460856911 ~2006
27231967612178557408911 ~2006
2723260031544652006310 ~2005
2723524019544704803910 ~2005
272356190913073097163312 ~2008
27235891011634153460711 ~2006
2723678843544735768710 ~2005
2723771903544754380710 ~2005
2723832659544766531910 ~2005
2724081719544816343910 ~2005
272411383147944403425712 ~2009
2724154151544830830310 ~2005
27242313731634538823911 ~2006
Exponent Prime Factor Digits Year
2724284159544856831910 ~2005
2724287759544857551910 ~2005
27243081314358893009711 ~2007
2724327071544865414310 ~2005
2724335543544867108710 ~2005
2724468251544893650310 ~2005
2724492359544898471910 ~2005
2724664199544932839910 ~2005
2724944063544988812710 ~2005
27249984011634999040711 ~2006
27251295596540310941711 ~2007
27252341571635140494311 ~2006
2725242119545048423910 ~2005
27252594411635155664711 ~2006
2725262531545052506310 ~2005
2725277699545055539910 ~2005
2725294931545058986310 ~2005
27254162771635249766311 ~2006
2725618391545123678310 ~2005
2725623419545124683910 ~2005
27256678012180534240911 ~2006
2725722959545144591910 ~2005
27257323972180585917711 ~2006
27258393974361343035311 ~2007
2725925711545185142310 ~2005
Exponent Prime Factor Digits Year
2726030831545206166310 ~2005
2726220779545244155910 ~2005
2726245139545249027910 ~2005
2726246639545249327910 ~2005
2726289899545257979910 ~2005
2726322143545264428710 ~2005
2726382299545276459910 ~2005
2726478959545295791910 ~2005
2726487443545297488710 ~2005
2726535263545307052710 ~2005
272654213921812337112112 ~2009
2726557859545311571910 ~2005
2726564783545312956710 ~2005
27265926011635955560711 ~2006
27267069076544096576911 ~2007
2726890739545378147910 ~2005
2726981291545396258310 ~2005
2727009479545401895910 ~2005
27270367131636222027911 ~2006
2727139403545427880710 ~2005
2727239843545447968710 ~2005
2727251399545450279910 ~2005
27272750092181820007311 ~2006
27273367612181869408911 ~2006
2727406439545481287910 ~2005
Exponent Prime Factor Digits Year
2727409571545481914310 ~2005
2727637019545527403910 ~2005
2727831779545566355910 ~2005
2727833411545566682310 ~2005
272783399349646578672712 ~2009
2727871859545574371910 ~2005
27279815272182385221711 ~2006
2728050971545610194310 ~2005
27280724411636843464711 ~2006
27281038372182483069711 ~2006
2728137311545627462310 ~2005
2728159223545631844710 ~2005
2728175039545635007910 ~2005
2728261103545652220710 ~2005
2728273043545654608710 ~2005
2728305383545661076710 ~2005
2728333571545666714310 ~2005
2728422659545684531910 ~2005
2728468199545693639910 ~2005
2728546763545709352710 ~2005
27285595936548543023311 ~2007
2728586279545717255910 ~2005
27286443371637186602311 ~2006
2728837619545767523910 ~2005
27290214472183217157711 ~2006
Home
4.724.182 digits
e-mail
25-04-13