Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
25306189211518371352711 ~2006
25307011392530701139111 ~2006
2530703999506140799910 ~2004
25308683712530868371111 ~2006
25309082211518544932711 ~2006
2530929911506185982310 ~2004
2530938071506187614310 ~2004
2531090099506218019910 ~2004
253110096111643064420712 ~2008
2531189651506237930310 ~2004
2531295251506259050310 ~2004
2531393159506278631910 ~2004
25314025371518841522311 ~2006
2531442911506288582310 ~2004
2531546639506309327910 ~2004
2531556563506311312710 ~2004
25315991531518959491911 ~2006
2531730251506346050310 ~2004
2531784971506356994310 ~2004
2531802323506360464710 ~2004
2531823491506364698310 ~2004
2531863319506372663910 ~2004
2531964863506392972710 ~2004
2532030251506406050310 ~2004
25320941295570607083911 ~2007
Exponent Prime Factor Digits Year
253209947321776055467912 ~2008
2532110099506422019910 ~2004
2532213731506442746310 ~2004
2532334823506466964710 ~2004
2532365183506473036710 ~2004
2532555023506511004710 ~2004
2532690971506538194310 ~2004
2532756983506551396710 ~2004
25328520131519711207911 ~2006
2532982979506596595910 ~2004
2533096199506619239910 ~2004
2533191863506638372710 ~2004
2533280411506656082310 ~2004
2533282883506656576710 ~2004
25334928615573684294311 ~2007
2533509743506701948710 ~2004
2533527071506705414310 ~2004
2533618079506723615910 ~2004
2533828403506765680710 ~2004
2534000219506800043910 ~2004
2534125151506825030310 ~2004
2534165759506833151910 ~2004
2534191043506838208710 ~2004
2534259503506851900710 ~2004
2534322023506864404710 ~2004
Exponent Prime Factor Digits Year
2534463539506892707910 ~2004
2534559179506911835910 ~2004
25346311632534631163111 ~2006
2534667743506933548710 ~2004
2534797703506959540710 ~2004
2534881859506976371910 ~2004
25349556137604866839111 ~2007
25350594592028047567311 ~2006
2535064079507012815910 ~2004
25351018931521061135911 ~2006
2535229871507045974310 ~2004
2535282779507056555910 ~2004
2535338423507067684710 ~2004
2535348323507069664710 ~2004
25353526636084846391311 ~2007
2535419531507083906310 ~2004
2535433139507086627910 ~2004
25354519514563813511911 ~2007
25355453571521327214311 ~2006
2535665519507133103910 ~2004
25356714772028537181711 ~2006
25357768512535776851111 ~2006
2535848459507169691910 ~2004
2536170503507234100710 ~2004
2536240799507248159910 ~2004
Exponent Prime Factor Digits Year
2536322699507264539910 ~2004
25363689312536368931111 ~2006
2536429403507285880710 ~2004
2536431791507286358310 ~2004
2536432751507286550310 ~2004
2536549259507309851910 ~2004
2536689539507337907910 ~2004
25367335274058773643311 ~2007
2536754579507350915910 ~2004
2536766339507353267910 ~2004
2536790363507358072710 ~2004
25369523571522171414311 ~2006
25370108692029608695311 ~2006
2537070143507414028710 ~2004
25370849411522250964711 ~2006
2537112659507422531910 ~2004
2537197823507439564710 ~2004
2537205311507441062310 ~2004
2537273339507454667910 ~2004
2537288639507457727910 ~2004
2537421863507484372710 ~2004
2537501639507500327910 ~2004
253753693310150147732112 ~2008
2537609279507521855910 ~2004
2537662019507532403910 ~2004
Home
4.828.532 digits
e-mail
25-06-01