Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
27961653771677699226311 ~2006
2796234323559246864710 ~2005
2796350891559270178310 ~2005
2796456011559291202310 ~2005
2796497471559299494310 ~2005
2796614963559322992710 ~2005
2796748631559349726310 ~2005
2796836099559367219910 ~2005
2796949271559389854310 ~2005
2797023899559404779910 ~2005
2797085111559417022310 ~2005
2797117751559423550310 ~2005
27971439172237715133711 ~2006
2797206143559441228710 ~2005
2797284419559456883910 ~2005
2797354979559470995910 ~2005
2797459211559491842310 ~2005
2797477379559495475910 ~2005
27975498192797549819111 ~2006
27975576496714138357711 ~2007
27976369972238109597711 ~2006
2797704839559540967910 ~2005
27978125931678687555911 ~2006
2797921331559584266310 ~2005
2797986239559597247910 ~2005
Exponent Prime Factor Digits Year
2798036639559607327910 ~2005
2798043623559608724710 ~2005
2798048063559609612710 ~2005
2798198159559639631910 ~2005
2798300111559660022310 ~2005
27983017973917622515911 ~2007
2798373863559674772710 ~2005
27984432176716263720911 ~2007
2798516711559703342310 ~2005
2798654051559730810310 ~2005
2798678903559735780710 ~2005
27987444011679246640711 ~2006
2798850371559770074310 ~2005
2798861423559772284710 ~2005
2798889311559777862310 ~2005
2798893199559778639910 ~2005
2799094283559818856710 ~2005
2799144311559828862310 ~2005
2799144563559828912710 ~2005
2799162323559832464710 ~2005
2799391643559878328710 ~2005
2799452651559890530310 ~2005
2799486323559897264710 ~2005
2799507071559901414310 ~2005
2799535811559907162310 ~2005
Exponent Prime Factor Digits Year
2799723779559944755910 ~2005
2799725063559945012710 ~2005
2799776123559955224710 ~2005
2799780383559956076710 ~2005
27998856298399656887111 ~2008
27998946595039810386311 ~2007
27999005331679940319911 ~2006
2799983831559996766310 ~2005
28000113731680006823911 ~2006
2800025099560005019910 ~2005
28001218971680073138311 ~2006
2800290299560058059910 ~2005
28003351336160737292711 ~2007
2800347131560069426310 ~2005
2800562939560112587910 ~2005
2800706543560141308710 ~2005
2800739603560147920710 ~2005
28007943171680476590311 ~2006
2800819979560163995910 ~2005
28008666598962773308911 ~2008
28009642338402892699111 ~2008
28010078931680604735911 ~2006
2801114891560222978310 ~2005
2801137439560227487910 ~2005
28011566931680694015911 ~2006
Exponent Prime Factor Digits Year
28011572872240925829711 ~2006
2801312639560262527910 ~2005
28013572011680814320711 ~2006
28013940075042509212711 ~2007
2801473271560294654310 ~2005
28014749171680884950311 ~2006
2801492399560298479910 ~2005
2801499671560299934310 ~2005
28015292998964893756911 ~2008
2801770091560354018310 ~2005
2801838839560367767910 ~2005
2801901083560380216710 ~2005
28019121072801912107111 ~2006
2801972399560394479910 ~2005
2801992211560398442310 ~2005
28021812014483489921711 ~2007
28022196531681331791911 ~2006
2802248831560449766310 ~2005
2802444563560488912710 ~2005
2802669539560533907910 ~2005
28027538512242203080911 ~2006
2802884039560576807910 ~2005
28029113812242329104911 ~2006
2802967883560593576710 ~2005
28029921112242393688911 ~2006
Home
4.828.532 digits
e-mail
25-06-01