Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2116404683423280936710 ~2004
2116448363423289672710 ~2004
21165298371269917902311 ~2005
2116587491423317498310 ~2004
211659280133442166255912 ~2008
2116873751423374750310 ~2004
2117058743423411748710 ~2004
21170689094657551599911 ~2006
2117081423423416284710 ~2004
2117195771423439154310 ~2004
2117219963423443992710 ~2004
2117309399423461879910 ~2004
21173586711693886936911 ~2005
21173791272117379127111 ~2006
2117379419423475883910 ~2004
21174034811270442088711 ~2005
2117590259423518051910 ~2004
21176172611270570356711 ~2005
2117741243423548248710 ~2004
2117819603423563920710 ~2004
2117840723423568144710 ~2004
2118056879423611375910 ~2004
2118064163423612832710 ~2004
2118131759423626351910 ~2004
2118132083423626416710 ~2004
Exponent Prime Factor Digits Year
21181646391694531711311 ~2005
21181715991694537279311 ~2005
2118332603423666520710 ~2004
21183431531271005891911 ~2005
2118368783423673756710 ~2004
2118380723423676144710 ~2004
2118415451423683090310 ~2004
2118417683423683536710 ~2004
21185212131271112727911 ~2005
2118531683423706336710 ~2004
2118689483423737896710 ~2004
21187185411694974832911 ~2005
2118722891423744578310 ~2004
2118762059423752411910 ~2004
2118796919423759383910 ~2004
2118838811423767762310 ~2004
2118848183423769636710 ~2004
2118894551423778910310 ~2004
21188972696356691807111 ~2007
2118914579423782915910 ~2004
2118939131423787826310 ~2004
21189682873814142916711 ~2006
2119131359423826271910 ~2004
2119132199423826439910 ~2004
2119226363423845272710 ~2004
Exponent Prime Factor Digits Year
21193807971271628478311 ~2005
21195015771271700946311 ~2005
2119650371423930074310 ~2004
2119704563423940912710 ~2004
21197122371271827342311 ~2005
2119748159423949631910 ~2004
21198058393815650510311 ~2006
21198153296359445987111 ~2007
2119899191423979838310 ~2004
21199057011271943420711 ~2005
21199830776359949231111 ~2007
2119984703423996940710 ~2004
21200042473392006795311 ~2006
2120012579424002515910 ~2004
2120019911424003982310 ~2004
2120252399424050479910 ~2004
21203278131272196687911 ~2005
2120393591424078718310 ~2004
2120648363424129672710 ~2004
2120665751424133150310 ~2004
2120691983424138396710 ~2004
21207180531272430831911 ~2005
2120792963424158592710 ~2004
21208409571272504574311 ~2005
212085241710180091601712 ~2007
Exponent Prime Factor Digits Year
21209152131272549127911 ~2005
2120931503424186300710 ~2004
21209887971272593278311 ~2005
2121004211424200842310 ~2004
2121018563424203712710 ~2004
21210313011272618780711 ~2005
2121049571424209914310 ~2004
21211603131272696187911 ~2005
2121175211424235042310 ~2004
2121194591424238918310 ~2004
2121258071424251614310 ~2004
21212834336788106985711 ~2007
21212955771272777346311 ~2005
21213826731272829603911 ~2005
2121408479424281695910 ~2004
2121428663424285732710 ~2004
21214322331272859339911 ~2005
2121442751424288550310 ~2004
2121479939424295987910 ~2004
21215143211272908592711 ~2005
2121553103424310620710 ~2004
2121586931424317386310 ~2004
21215887611272953256711 ~2005
2121616751424323350310 ~2004
2121683939424336787910 ~2004
Home
4.933.056 digits
e-mail
25-07-20