Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
253768516919793944318312 ~2008
2537705231507541046310 ~2004
2537745191507549038310 ~2004
25378497011522709820711 ~2006
2537866091507573218310 ~2004
25379771531522786291911 ~2006
25380037811522802268711 ~2006
2538005279507601055910 ~2004
25380210914568437963911 ~2007
2538031403507606280710 ~2004
2538139391507627878310 ~2004
2538163151507632630310 ~2004
2538178763507635752710 ~2004
25383609976092066392911 ~2007
25384166692030733335311 ~2006
2538500099507700019910 ~2004
25385533371523132002311 ~2006
25385935931523156155911 ~2006
2538748571507749714310 ~2004
2538969683507793936710 ~2004
2539142471507828494310 ~2004
25392107211523526432711 ~2006
2539412003507882400710 ~2004
2539455059507891011910 ~2004
25395678371523740702311 ~2006
Exponent Prime Factor Digits Year
2539633319507926663910 ~2004
2539716551507943310310 ~2004
2539717391507943478310 ~2004
2539724339507944867910 ~2004
25398110896095546613711 ~2007
2539818971507963794310 ~2004
253982975912191182843312 ~2008
25399346516603830092711 ~2007
25400497272540049727111 ~2006
2540121659508024331910 ~2004
2540212271508042454310 ~2004
2540333591508066718310 ~2004
2540416871508083374310 ~2004
2540535611508107122310 ~2004
2540641679508128335910 ~2004
2540652671508130534310 ~2004
2540666363508133272710 ~2004
25407220274065155243311 ~2007
2540741543508148308710 ~2004
2540767451508153490310 ~2004
2540777051508155410310 ~2004
2540793239508158647910 ~2004
25408082472540808247111 ~2006
2541353183508270636710 ~2004
2541370883508274176710 ~2004
Exponent Prime Factor Digits Year
2541415139508283027910 ~2004
25415413072033233045711 ~2006
2541678791508335758310 ~2004
2541739019508347803910 ~2004
2541779351508355870310 ~2004
254182204334568779784912 ~2009
25420854614067336737711 ~2007
2542091459508418291910 ~2004
25420941432542094143111 ~2006
2542094843508418968710 ~2004
2542178651508435730310 ~2004
2542223219508444643910 ~2004
2542265723508453144710 ~2004
2542274363508454872710 ~2004
25423488892033879111311 ~2006
25423739474067798315311 ~2007
2542386419508477283910 ~2004
2542414163508482832710 ~2004
2542560539508512107910 ~2004
25427182811525630968711 ~2006
2542786931508557386310 ~2004
25428024533559923434311 ~2007
2542818359508563671910 ~2004
2542973819508594763910 ~2004
2542995443508599088710 ~2004
Exponent Prime Factor Digits Year
2543138219508627643910 ~2004
2543281211508656242310 ~2004
25433209931525992595911 ~2006
2543471891508694378310 ~2004
2543475839508695167910 ~2004
2543579999508715999910 ~2004
2543728091508745618310 ~2004
2543761691508752338310 ~2004
2543800211508760042310 ~2004
25439031112035122488911 ~2006
25439114712543911471111 ~2006
25441182674070589227311 ~2007
2544183959508836791910 ~2004
2544203699508840739910 ~2004
25442630171526557810311 ~2006
25442962331526577739911 ~2006
2544310019508862003910 ~2004
25443183731526591023911 ~2006
2544425459508885091910 ~2004
2544492011508898402310 ~2004
2544634019508926803910 ~2004
25447729072035818325711 ~2006
2544784811508956962310 ~2004
25448087931526885275911 ~2006
25448539912035883192911 ~2006
Home
4.828.532 digits
e-mail
25-06-01