Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
30926180411855570824711 ~2006
3092646911618529382310 ~2005
30927666712474213336911 ~2007
3092769419618553883910 ~2005
3092873183618574636710 ~2005
3093102599618620519910 ~2005
30931369574949019131311 ~2007
3093151703618630340710 ~2005
30931772531855906351911 ~2006
3093317651618663530310 ~2005
3093425651618685130310 ~2005
3093501419618700283910 ~2005
3093556871618711374310 ~2005
3093574703618714940710 ~2005
3093738611618747722310 ~2005
3093776459618755291910 ~2005
3093791411618758282310 ~2005
3094101239618820247910 ~2005
3094132451618826490310 ~2005
3094213079618842615910 ~2005
3094290911618858182310 ~2005
30943997392475519791311 ~2007
3094418039618883607910 ~2005
30944930114951188817711 ~2007
3094496543618899308710 ~2005
Exponent Prime Factor Digits Year
30947782931856866975911 ~2006
30948174712475853976911 ~2007
30950557011857033420711 ~2006
3095072639619014527910 ~2005
30951417292476113383311 ~2007
3095181059619036211910 ~2005
3095192519619038503910 ~2005
3095295683619059136710 ~2005
3095364143619072828710 ~2005
3095458031619091606310 ~2005
30956045174952967227311 ~2007
30956543771857392626311 ~2006
3095710031619142006310 ~2005
3095738363619147672710 ~2005
3095824643619164928710 ~2005
3095858411619171682310 ~2005
3095881559619176311910 ~2005
30958859531857531571911 ~2006
3095910203619182040710 ~2005
30959450534953512084911 ~2007
3096327683619265536710 ~2005
30965026312477202104911 ~2007
30967163512477373080911 ~2007
3096800159619360031910 ~2005
3096842999619368599910 ~2005
Exponent Prime Factor Digits Year
3097240439619448087910 ~2005
30973399011858403940711 ~2006
30975121131858507267911 ~2006
30978317392478265391311 ~2007
30984731713098473171111 ~2007
3098640491619728098310 ~2005
30987492715577748687911 ~2007
30989422219296826663111 ~2008
30990107211859406432711 ~2006
30990515416817913390311 ~2008
3099181643619836328710 ~2005
3099328031619865606310 ~2005
3099450383619890076710 ~2005
3099917939619983587910 ~2005
31000871872480069749711 ~2007
3100218263620043652710 ~2005
31009693731860581623911 ~2006
31011288892480903111311 ~2007
3101184059620236811910 ~2005
3101269739620253947910 ~2005
3101308739620261747910 ~2005
31013167372481053389711 ~2007
3101351999620270399910 ~2005
3101394539620278907910 ~2005
3101421971620284394310 ~2005
Exponent Prime Factor Digits Year
3101492099620298419910 ~2005
3101507099620301419910 ~2005
31016201212481296096911 ~2007
31016544014962647041711 ~2007
3101807903620361580710 ~2005
3101867603620373520710 ~2005
3102039851620407970310 ~2005
3102069563620413912710 ~2005
3102083879620416775910 ~2005
3102085271620417054310 ~2005
310227579712409103188112 ~2008
31023742371861424542311 ~2006
3102481463620496292710 ~2005
3102592763620518552710 ~2005
3102601283620520256710 ~2005
3102685571620537114310 ~2005
3102888011620577602310 ~2005
31028941811861736508711 ~2006
31030412334344257726311 ~2007
3103248611620649722310 ~2005
3103295411620659082310 ~2005
3103352723620670544710 ~2005
3103388831620677766310 ~2005
31034646411862078784711 ~2006
3103563563620712712710 ~2005
Home
4.724.182 digits
e-mail
25-04-13