Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
69340925511386818510311 ~2008
69341404911386828098311 ~2008
69342431031386848620711 ~2008
69343533231386870664711 ~2008
69349199511386983990311 ~2008
69349853815547988304911 ~2009
69358672191387173443911 ~2008
69362787111387255742311 ~2008
69362851934161771115911 ~2009
69365963391387319267911 ~2008
69366047815549283824911 ~2009
69366055791387321115911 ~2008
69372422934162345375911 ~2009
69376774014162606440711 ~2009
693776401940239031310312 ~2011
69380255476938025547111 ~2010
69380727831387614556711 ~2008
69382041591387640831911 ~2008
693832656723590310327912 ~2011
69384779815550782384911 ~2009
69392181734163530903911 ~2009
69392993031387859860711 ~2008
69393170174163590210311 ~2009
69395192596939519259111 ~2010
69401638311388032766311 ~2008
Exponent Prime Factor Dig. Year
69402031911388040638311 ~2008
69408803991388176079911 ~2008
69411519111388230382311 ~2008
69413706174164822370311 ~2009
69416075031388321500711 ~2008
69417061191388341223911 ~2008
69417403574165044214311 ~2009
69417915111388358302311 ~2008
69419964174165197850311 ~2009
69423454911388469098311 ~2008
69424955031388499100711 ~2008
69427192431388543848711 ~2008
69427357431388547148711 ~2008
69427387214165643232711 ~2009
69430186134165811167911 ~2009
69430846791388616935911 ~2008
694324918915275148215912 ~2010
69432690231388653804711 ~2008
69433706716943370671111 ~2010
69437341791388746835911 ~2008
69437564391388751287911 ~2008
69437830431388756608711 ~2008
69437980791388759615911 ~2008
69438358311388767166311 ~2008
69441789111388835782311 ~2008
Exponent Prime Factor Dig. Year
69443844831388876896711 ~2008
69448252431388965048711 ~2008
69453248631389064972711 ~2008
69453368215556269456911 ~2009
69453657231389073144711 ~2008
69455997231389119944711 ~2008
69459271191389185423911 ~2008
69459341991389186839911 ~2008
69460618911389212378311 ~2008
69461941191389238823911 ~2008
69464450031389289000711 ~2008
69469744311389394886311 ~2008
69470502231389410044711 ~2008
69473088831389461776711 ~2008
69473612511389472250311 ~2008
69475285311389505706311 ~2008
694771741923622239224712 ~2011
69479081991389581639911 ~2008
69479191379727086791911 ~2010
69479423334168765399911 ~2009
69479865111389597302311 ~2008
69482639774168958386311 ~2009
69488263014169295780711 ~2009
69492930231389858604711 ~2008
69500121831390002436711 ~2008
Exponent Prime Factor Dig. Year
69500538111390010762311 ~2008
69501341511390026830311 ~2008
69502072191390041443911 ~2008
69506966631390139332711 ~2008
69507757911390155158311 ~2008
69515874111390317482311 ~2008
69521663631390433272711 ~2008
69526880031390537600711 ~2008
69528432174171705930311 ~2009
69528590031390571800711 ~2008
69531277934171876675911 ~2009
695323444143110053534312 ~2012
69534857511390697150311 ~2008
69536541174172192470311 ~2009
69539253711390785074311 ~2008
695396409716689513832912 ~2011
69541178511390823570311 ~2008
69541205991390824119911 ~2008
695451774712518131944712 ~2010
695453829111127261265712 ~2010
69546027831390920556711 ~2008
695467811376501459243112 ~2012
69547437295563794983311 ~2009
695513981316692335551312 ~2011
695532547315301716040712 ~2010
Home
4.724.182 digits
e-mail
25-04-13