Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
100900077232018001544711 ~2009
100903148518072251880911 ~2011
100908897298072711783311 ~2011
100909703392018194067911 ~2009
100910236192018204723911 ~2009
100920743512018414870311 ~2009
100920917816055255068711 ~2010
100925460592018509211911 ~2009
100929295792018585915911 ~2009
100932814616055968876711 ~2010
100948932178075914573711 ~2011
100950241192019004823911 ~2009
100951346032019026920711 ~2009
100951611232019032224711 ~2009
100953699232019073984711 ~2009
100954168192019083363911 ~2009
100954424816057265488711 ~2010
100956413416057384804711 ~2010
100959968032019199360711 ~2009
100961170792019223415911 ~2009
100962342376057740542311 ~2010
100971746512019434930311 ~2009
1009726858132311259459312 ~2012
100985376232019707524711 ~2009
100989697336059381839911 ~2010
Exponent Prime Factor Dig. Year
100989898432019797968711 ~2009
100999988992019999779911 ~2009
101001615736060096943911 ~2010
101001673912020033478311 ~2009
101012975992020259519911 ~2009
101016848992020336979911 ~2009
101016872098081349767311 ~2011
101018609992020372199911 ~2009
101022184912020443698311 ~2009
101022237736061334263911 ~2010
101023653232020473064711 ~2009
101026065712020521314311 ~2009
101028128992020562579911 ~2009
1010301360710103013607112 ~2011
101031688912020633778311 ~2009
1010353851740414154068112 ~2012
101046553912020931078311 ~2009
101047917712020958354311 ~2009
101053801432021076028711 ~2009
101057337832021146756711 ~2009
101058382432021167648711 ~2009
1010663341724255920200912 ~2012
101071224976064273498311 ~2010
101074032592021480651911 ~2009
101074393792021487875911 ~2009
Exponent Prime Factor Dig. Year
101074627198085970175311 ~2011
101079835912021596718311 ~2009
101084307232021686144711 ~2009
101085263032021705260711 ~2009
101088205312021764106311 ~2009
101089814816065388888711 ~2010
1010899993910108999939112 ~2011
101090592112021811842311 ~2009
101092123432021842468711 ~2009
101092583392021851667911 ~2009
101095346632021906932711 ~2009
101100164392022003287911 ~2009
101102087936066125275911 ~2010
101112357592022247151911 ~2009
1011206454116179303265712 ~2011
101128543432022570868711 ~2009
101143278592022865571911 ~2009
101143855792022877115911 ~2009
101150382592023007651911 ~2009
101150653912023013078311 ~2009
101151023512023020470311 ~2009
101153345632023066912711 ~2009
101153857792023077155911 ~2009
101155381376069322882311 ~2010
101164784512023295690311 ~2009
Exponent Prime Factor Dig. Year
101164936432023298728711 ~2009
101164991632023299832711 ~2009
101165291536069917491911 ~2010
101178685912023573718311 ~2009
101179904392023598087911 ~2009
101183687512023673750311 ~2009
101184682192023693643911 ~2009
101187811318095024904911 ~2011
1011896679110118966791112 ~2011
1011945999110119459991112 ~2011
1012030052342505262196712 ~2012
101204369392024087387911 ~2009
101206381792024127635911 ~2009
101209867192024197343911 ~2009
101210980792024219615911 ~2009
101216898712024337974311 ~2009
101218624976073117498311 ~2010
101228978878098318309711 ~2011
101230254832024605096711 ~2009
101230404136073824247911 ~2010
101238842032024776840711 ~2009
101239324432024786488711 ~2009
101240925418099274032911 ~2011
101244087191249...35924714 2023
101248675792024973515911 ~2009
Home
4.724.182 digits
e-mail
25-04-13