Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1830136052914641088423312 ~2013
183022668833660453376711 ~2011
183034332833660686656711 ~2011
1830365665340268044636712 ~2014
183038130233660762604711 ~2011
183042219593660844391911 ~2011
183044154713660883094311 ~2011
1830574378329289190052912 ~2013
183059363393661187267911 ~2011
183061054913661221098311 ~2011
183062613713661252274311 ~2011
1830738445329291815124912 ~2013
1830741026958583712860912 ~2014
1830769788718307697887112 ~2013
183080905193661618103911 ~2011
183085475993661709519911 ~2011
1830869176940279121891912 ~2014
183090213233661804264711 ~2011
1830933299943942399197712 ~2014
1830939056914647512455312 ~2013
183095023313661900466311 ~2011
183095707913661914158311 ~2011
1830975645710985853874312 ~2012
183101462033662029240711 ~2011
1831259752114650078016912 ~2013
Exponent Prime Factor Dig. Year
183134038193662680763911 ~2011
183138593633662771872711 ~2011
183155894033663117880711 ~2011
183171097433663421948711 ~2011
183187557233663751144711 ~2011
1831920667114655365336912 ~2013
183195190793663903815911 ~2011
183208095833664161916711 ~2011
183212328833664246576711 ~2011
1832295921710993775530312 ~2012
1832319748114658557984912 ~2013
1832553427310995320563912 ~2012
183257431193665148623911 ~2011
183266353313665327066311 ~2011
183277434113665548682311 ~2011
183291085193665821703911 ~2011
183299016713665980334311 ~2011
183300877913666017558311 ~2011
183308149793666162995911 ~2011
1833119611114664956888912 ~2013
183312403313666248066311 ~2011
1833231660110999389960712 ~2012
183323708633666474172711 ~2011
183331456793666629135911 ~2011
1833329824110999978944712 ~2012
Exponent Prime Factor Dig. Year
183339074513666781490311 ~2011
183350227913667004558311 ~2011
183366894113667337882311 ~2011
1833736403914669891231312 ~2013
183380602913667612058311 ~2011
183387390113667747802311 ~2011
183401523713668030474311 ~2011
183404255993668085119911 ~2011
1834075308718340753087112 ~2013
183414011393668280227911 ~2011
183422775713668455514311 ~2011
183426498833668529976711 ~2011
183430707833668614156711 ~2011
183431836193668636723911 ~2011
1834356751329349708020912 ~2013
1834410610111006463660712 ~2012
1834426042714675408341712 ~2013
183456684177895...86676914 2024
1834592754111007556524712 ~2012
183462869513669257390311 ~2011
183465609233669312184711 ~2011
183467214833669344296711 ~2011
183469719713669394394311 ~2011
183474759833669495196711 ~2011
183474782393669495647911 ~2011
Exponent Prime Factor Dig. Year
183475965233669519304711 ~2011
183495684833669913696711 ~2011
1835065168114680521344912 ~2013
1835137393311010824359912 ~2012
183515319113670306382311 ~2011
183526991993670539839911 ~2011
183534111833670682236711 ~2011
183544195913670883918311 ~2011
1835493164914683945319312 ~2013
1835553023933039954430312 ~2014
1835622825118356228251112 ~2013
183569061593671381231911 ~2011
183591278633671825572711 ~2011
1835927824377108968620712 ~2014
1836014359711016086158312 ~2012
183601845233672036904711 ~2011
183608091713672161834311 ~2011
1836122688744066944528912 ~2014
183617508713672350174311 ~2011
183625796633672515932711 ~2011
183630793313672615866311 ~2011
183631123313672622466311 ~2011
1836364287711018185726312 ~2012
183637439393672748787911 ~2011
183637994513672759890311 ~2011
Home
4.754.097 digits
e-mail
25-04-28